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FOREWORD

The development described in this report was performed by Life Systems, Inc.

under NASA Contract NAS2-7862. The work was performed during the period

beginning September 26, 1973 through March 51, 1976. The Program Manager was

J. W. Shumar. Technical support was provided as follows:

Personnel Area(s) of Responsibilit Z

Gary G. See Mechanical design

J. David Powell Electrical design

Franz H. Schubert Mechanical and system design

Glenn A. Little Ground Support Accessories layout and fabrica-

tion, and component testing

Rick A. Wynveen, PhD Program administration, electrochemical support

Kamal K. Kacholia Chemical engineering support

The contract's Technical Monitor was P. D. Quattrone, Chief, Environmental

Control Research Branch, NASA Ames Research Center, Moffett Field, CA with

assistance from Layton Ingelfinger, NASA Ames Research Center.

The solid electrolyte oxygen regeneration concept was based upon the work

performed by Applied Electrochemistry, Inc., Sunnyvale, CA, in designing,

developing, fabricating and delivering the solid electrolyte cells for incor-

poration into the Solid Electrolyte Oxygen Regeneration System. This work was
conducted under NASA Contracts NAS2-4845 and NAS2-6412.
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SUI_[ARY

A program to design, develop, fabricate and assemble a One-Man, Self-Contained,

Solid Electrolyte Oxygen Regeneration System (SX-I) incorporating solid elec-

trolyte electrolyzer drums that were designed, developed, fabricated and

tested under Contracts NAS2-2810, NAS2-4843, and NAS2-6412 was completed. The

SX-I is a preprototype engineering model designed to produce 0.952 kg (2.1

ib)/day of breathable oxygen (02) from the electrolysis of metabolic carbon
dioxide (CO^) and water vapor. The CO^ supply rate was established based onz z
the metabohc COp generation rate for one man of 0.998 kg (2.2 ib)/day. The

water supply rat_ (0.254 kg (0.56 Ib)/day) was designed to be sufficient to

make up the difference between the 0.952 kg (2.1 ib)/day Op generation speci-

fication and the 02 available through CO 2 electrolysis, 0.726 kg (1.6 Ib)/day.
The SX-I was successfully designed, fabrlcated and assembled. Design Verifi-

cation Tests (DVT) or the CO Disproportionators, H 2 Separators, Control
Instrumentation, Monitor Instrumentation, Water Feed Mechanism were success-

fully completed. The erratic occurrence of electrolyzer drum leakage prevented

the completion of the CO 2 Electrolyzer Module and Water Electrolyzer Module
DVT's and also prevented the performance of SX-I integrated testing. Further

development work is required to improve the solid electrolyte cell high temp-

erature seals.

The SX-I was designed with electronic Control and Monitor Instrumentation to

carry out operating mode change sequences, regulate performance, analyze and

display performance trends and detect faults.

Other major components that were designed, fabricated, assembled, tested, and

incorporated into the SX-I include the Carbon Monoxide (CO) Disproportionators

in which CO is converted to CO 2 and solid carbon, Hydrogen (H2) Separators
which remove excess H^ from the SX-I feed gas and recycle loop gas, a high

z
temperature Recycle Loop Bellows Pump which provides the recycle loop gas

flow, Hot Gas Valves which allow servicing of the CO Disproportionators, and a

Water Feed Mechanism which provides the water vapor for the Water Electrolyzer

Module at a stable steam flow rate.

The Ground Support Accessories (GSA) required to test the SX-I were designed,

fabricated, assembled and functionally checked out. The GSA were designed to

simulate the actual spacecraft interfaces for three candidate COp removal

systems: the Electrochemical Depolarized Concentrator (EDC), the-Molecular

Sieve and the Steam-Desorbed Solid Amine. The GSA consisted of a Fluid Supply

Unit (FSU), a Space Vacuum Simulator (SVS), a Gas Products Monitor (GPH), a

Ground Checkout Unit (GCU), component checkout stands and a Carbon Deposition

Cartridge (CDC) activation facility.

A Product Assurance Program incorporated quality assurance, reliability, main-

tainability, safety and materials control. Activities included conducting de-

sign review meetings, preparing a Failure Mode Effects and Criticality Analysis

(FMECA), preparation of safety design criteria, and monitoring of system

design and fabrication with regard to quality control maintainability and

materials compatibility.
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Program testing consisted of performing component checkout tests and major

component DVTs.

O The CO Disproportionator was successfully tested for 28 days at

operating temperatures ranging from 775 to 845K (952 to I058F) and

at feed gas flow rates from 685 sccm (0.02 scfm) to 5670 sccm (0.13

scfm). The CO Disproportionator conversion efficiency exceeded the

design goal of 56%.

The H2 Separators were successfully tested at temperatures from 611

to 650K (640 to 711F). The feed gas H2 Separator exceeded the
design H^ removal rate goal by 67% and the recycle loop H9 Separator

exceededZthe design H2 removal rate goal by 27%.

The Water Feed Mechanism was successfully tested for 60 hours at its

design operating temperature. The Water Feed Mechanism delivered

steam in a stable flow mode at feed rates up to 1.8 times the design

water vapor feed rate of 0.245 kg (0.54 ib)/day.

The Control Instrumentation mode transition sequences and control

functions were tested. All mode transitions were successfully

accomplished and all control functions performed satisfactorily at

their design points.

The Monitor Instrumentation was tested by simulating sensor outputs

from the SX-I and verifying the Monitor Instrumentation setpoints

that were set for the individual printed circuit (PC) cards.

Leak tests were performed on the electrolyzer drums that were produced
under NAS2-6412. The results indicated that several of the drums

leaked. This erratic occurrence of electrolyzer drum leakage pre-

vented the performance of integrated SX-1 testing.

Other testing successfully completed included checkout tests on the
Hot Gas Valves at their operating conditions, checkout tests on all

SX-I off-the-shelf components including valves, pressure transducers,

pressure regulators, thermocouples, thermistors and flow restrictors.

As part of parallel technology activities, the methods for analyzing the SX-1
recycle loop and product gases were established and a computer program for

calculating the gas composition at various points in the SX-1 recycle loop was

developed.

INTRODUCTION

There is a definite need for systems that can recover oxygen (02) from metabolic-
ally produced carbon dioxide (C02) for future extended duration manned space-

flights. Such a system could reduce flight weight by eliminating the need for

carrying stored 02 (in the form of water or equivalent) at launch.
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Several concepts which partially or completely perform this function have been

proposed and studied. Some of these are the Fused Salt concept, the Solid

Electrolyte concept, the Bosch Reactor concept, the Sabatier-Methane Dump

concept, the Sabatier-Methane Decomposition concept, and the Sabatier-Acetylene
Dump concept. The results of the study _ _ for evaluating and selecting life

support systems for a 500-day non-resupply mission revealed that the most

promising route for O_ recovery from CO_ was electrolysis using solid oxide

electrolyzers and Car_on Monoxide (CO) _isproportionators with replaceable

cartridges. Several features of the Solid Electrolyte concept led to its

selection. The Solid Electrolyte Oxygen Regeneration System (SEORS) combines

the function of two separate subsystems t_at are required in alternate Oxygen

Regeneration Systems (ORS); a CO_ Reduction Subsystem such as a Bosch or
Sabatier reactor and an Oxygen G_neration Subsystem (water electrolyzer). In

the solid electrolyte concept, both CO_ reduction and water electrolysis are
carried out in the solid electrolyte eIectrolyzer cells. As a result, an ORS

based on the solid electrolyte concept has a low equivalent weight, a minimum
of interfaces, simplified instrumentation and an absence of condensor

separators.

Background

The concept of 02 ion transfer through solid elec_91ytes was first investi-
gated by Nernst and Reynolds in the early 1900's. _ _ However, it was only

recently that the unusual electrical properties of solid electrolytes had been

put to practical use. This is generally attributed to the recent development

of high temperature materials and sealing techniques which are required for

the application of products based upon the solid electrolyte concepts.

Initial work involving the application of solid el_rolyte cells for O_ re-

generation was carried out by Chandler and Pollara _ " in the early I_604s.

They built and operated a system that produced 150 cc/min (5.3 x i0- cfm) 02 .
The life of their system was short and a deterioration in the catalytic

activity of their carbon deposition reactor was observed.

More recently Weissbart and Smart, (4) conducted investigations on alternate

solid electrolyte materials and also designed, developed, fabricated and

tested _e_rolyzer drums based on a flat plate solid electrolyte configu-

ration. <_'_j A six-drum, 12-cell, 24-ampere electrolyzer module was operated

continuously for over 2,000 hours. The Faradaic current efficiency was 100%

and 02 produced contained less than 0.4% CO^ as an impurity, t'j The test
program included the integration of the electrolyzer module with a carbon
deposition reactor.

Elikan and co-workers, during the same time period, designed, developed,

fabricated and tested multicell electrolysis batteries, a carbon deposition

reactor and palladium (Pd) foil hydrogen (H2) diffusers. The electrolysis
batteries of the "bell and spigot" design, as well as the continuous carbon
deposition reactor, operated independently for periods exceeding 100 days. [8)

(i) Numbers in parentheses are references found at the end of this report.

ORIG/NAL PAGE I8

OF POOR QUALITY

3
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Subsequent to this work, a i/4-man SEORS, consisting of an electrolyzer with

"bell and spigot" cells, a carbo_9_eposition reactor and Pd H^ Separator were
designed, fabricated and tested. _ _ The system was operated _or 180 days.

However, the O^ purity decreased with operating time. The major impurity in
z

the O_ was CO^ with lesser amounts of water, nltrogen (N^) and CO. The SAE

Bioen_Ironmen_al Systems Advisory Committee, in a study of alternate methods

for reclaiming O^ from CO^, attributed the relatively high CO 2 content in the
questlonable adequacy of the "bell and spigot" cell sealingproduct 0 2 to the . z

techniques.

System Description

A block diagram which describes the One-Man, Self-Contained, Solid Electrolyte

Oxygen Regeneration System (SX-I) operation and depicts the major SX-I compo-

nents is shown in Figure I. The major components are the CO 9 and Water Electro-
lyzer Modules which convert CO^ and water into CO and 0_, ana H_ and O_,

respectively; the CO Dispropor_ionators in which CO is _onverte_ into _0^ and

solid carbon; H2 Separators which remove excess H2 from the SX-I feed ga_ and
recycle loop gas; a high temperature Recycle Loop Bellows Pump which provides

the recycle loop gas flow; Hot Gas Valves which allow servicing of the CO

Disproportionators, and a Water Feed Mechanism which provides the water vapor

for the Water Electrolyzer Module at a stable steam flow rate. The SX-I also

incorporated electronic Control and Monitor Instrumentation to carry out

operating mode change sequences, regulate performance, analyze and display

performance trends and detect faults.

Program Objectives

The objective of this program was to design, develop, fabricate, assemble and
test an SX-1, incorporating electrolyzer drums that were designed, developed
and fabricated under Contracts NAS2-2810, NAS2-4843 and NAS2-6412. To accom-

plish the above, the program was divided into five tasks and program management

functions. The specific objectives of the five tasks were to:

. Design, develop, fabricate and assemble a one-man, preprototype
engineering model of the SX-1. This task included (a) defining the

system and its operating modes, (b) designing, fabricating, and

assembling C02 and Water Electrolyzer Modules, CO Disproportionators,
H2 Separators, Control and Monitor Instrumentation, Hot Gas Valves,
valves, regulators and transducers, and (c) designing the system

packaging to ensure optimum system performance, maintainability,

safety and reliability.

. Design, fabricate, assemble and functionally check out the Ground

Support Accessories (GSA) required for performing the parametric and

endurance test on the system. The GSA consists of:

a. A Fluid Supply Unit (FSU) which contains the valves, flowmeters

and pressure regulators required to control the H2, CO2, water,

N^ and 02 supplies required to simulatethe interzace zrom
t_ree CO2 Collection Systems: The Electrochemical Depolarized
Concentrator (EDC), the Steam-Desorbed Solid Amine and the
Molecular Sieve

4
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b.

C,

d.

e,

A Space Vacuum Simulator (SVS) which contains the vaccum pumps,

pressure gauges and traps required to simulate H2 venting to

space vacuum

A Gas Products Monitor (GPM) which includes H2 and 02 flow,

pressure, temperature and purity monitoring provisions

A Ground Checkout Unit (GCU) which consists of meters, switches

and displays required to measure system performance in engineer-

ing units

A Carbon Deposition Cartridge (CDC) activation facility

f. Component checkout stands

3. Conduct a Product Assurance Program to ensure that the concepts of

quality control, maintainability, safety and reliability were incor-

porated into the design and fabrication of the SX-I.

4. Conduct the program testing including component checkouts, calibration

and Design Verification Tests (DVT).

5. Carry out supporting studies associated with the SX-I system develop-

ment. Supporting studies consisted of establishing analytical

methods for analyzing the feed gases, the recycle loop gases and

product gases.

The following sections summarize the results of the program and the conclusions

and recommendations reached.

SX-I SYSTEM DESIGN

System Function

The function of the SX-I is to generate 0.952 kg (2.11b) of breathable

02/day. This is accomplished by electrolyzing the metabolic CO^ produced by
one man, 0.998 kg (2.20 ib/day) and water vapor that is available from the

spacecraft Water Management System and from water vapor carried by the exhaust

of the CO 2 Collection System. The 09 obtained from the electrolysis of the

metabolic CO 2 is 0.726 kg (1.6 ib/day). To supplement this, 0.254 kg (0.56
Ib/day) of water is electrolyzed to yield 0.22 kg (0.5 ib/day) of 02 . The net

reactions describing the electrolysis of CO 2 and water are

CO 2 = CO + ½02
(i)

and

H20 = H2 + ½02
(23
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As a result of the CO and H 2 produced in the electrolysis reaction, it is
necessary to include a CO D1sproportionator and a H^ Separator in the recycle

loop of the SX-I. The function of the CO Dispropor_ionator is to convert CO

produced in Reaction 1 to CO 2 and solid carbon. This ensures the maximum

recovery of 02 from the CO 2. The reaction taking place in the CO Dispropor-
tionator is

2C0 = CO 2 + C (3)

The solid carbon is collected in replaceable cartridges which are discarded.

The function of the H^ Separator is to remove H2 from the recycle loop.
Hydrogen is introduce_ into the recycle loop in two ways: (I) it is carried

along by the exhaust of the CO 2 Collection System, and (2) it is created in
the CO^ Electrolyzer Modules by electrolysis of water vapor carried along by

the fe_d gases. It is important that the excess H^ be removed from the recycle

loop, otherwise it would accumulate and cause an i_crease in loop pressure and

dilute the volume percentage of CO 2 in the electrolyzer. Eventually the SX-I

would experience a high CO 2 electrolyzer drum voltage shutdown caused by H 2
blanketing the cathode or a high pressure shutdown.

System Capacities

The capacities and operating characteristics of the SX-I are described in the

system design specifications presented in Table I. This data is based on the

SX-I interfacing with an EDC CO 2 Collection System. A system block diagram

showing components and system interfaces based on interfacing with the EDC CO 2
Collection System was shown in Figure I. The SX-I was designed to be capable

of operating with the feed gas interfaces from three CO^ Collection Systems:

EDC, Molecular Sieve and Steam-Desorbed Solid Amine. T_ble 2 lists the inter-

faces for the three CO 2 Collection Subsystems.

System Schematic

The SX-I system schematic is shown in Figure 2. The major components of the

system are an Electrolyzer Subassembly containing a Water Electrolyzer Module

and three CO 2 Electrolyzer Modules, a Water Feed Mechanism, two CO Dispropor-

tionators, Recycle Loop Bellows Pump, two H? Separators, four Hot Gas Valves,

Control and Monitor Instrumentation, and a N 2 Purge System.

Water Electrolzzer

Water from the GSA is supplied through the deionizer, DEIO1, and solenoid

valve, SVIO1, to the Water Feed Mechanism, FBIO1. The Water Feed Mechanism is

a zero gravity design that utilizes a flash orifice and a pre-heater and

super-hearer section to convert the water to water vapor for entry into the

Water Electrolyzer Module. The water vapor is decomposed in the water elec-
trolyzer. The net reaction is

H20 = H 2 + ½02 C4)

7
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TABLE 1 SYSTEM DESIGN SPECIFICATIONS (a)

Number of Crew (Continuous)

Oxygen Produced, kg/s (Lb/Day)

From CO 2 Electrolysis
From Wa_er Electrolysis

Total

Oxygen Purity, %
CO
CO 2

Hydrogen Produced, kg/s (Lb/Day)

From Water Electrolyzer

Separated from Recycle Loop

Separated from Feed Gas
Total

Hydrogen Purity (excluding water vapor), % H2

Carbon Produced, kg/s (Lb/Day)

Feed Gas Composition, kg/s (Lb/Day) [a)"

!L
Water Supply

Flow Rate, kg/s (Lb/Day)
Pressure, N/m 2 (Psia)

Temperature, K (F)

Nitrogen Purge Supply Pressure, N/m 2 (Psia)

Recycle Loop
Pressure, N/m 2 (Psia)

Flow, m3/s (Slpm)

Cabin Atmosphere
Total Pressure, N/m 2 (Psia)

Temperature, K (F)

Dew Point Temperature, K (F)

02 Partial Pressure, N/m2 (Psia)

Heat Rejection Sink

Purge Sink

8.502 x lO-6. (1.618)
2.533 x I0 -b (0.482)

ii.035 x I0-6 (2.100)

<0.5

None Detectable

0.315 x 10 -6 (0.060)
0.074 x 10 -°. (0.014)
0.100 x 10 -o (0.019)
0.489 x 10 -6 (0.093)

>98

3.158 x 10 -6 (0.601)

11.560 x 10 -6 (2.200)
0.163 x 10 -0 (0.031)
0.I05 x 10 -6 (0.020)

2.848 x 10 -6 (0.542)

31.030 x 104 (45)

277.6 to 291.5 (40 to 65)

31.030 x 104 (45)

10.3 x 104 to ii.0 x 104

(15 to 16)

5.1 x 10 -5 (3.08)

I0.i x 104 to 10.4 x 104

(14.7 to 15.2)

291.5 to 297.0 (65 to 75)

280.9 to 287.0 (46 to 57)
2.1 x 104 to 2.3 x 104

(3.04 to 3.28)

Ambient Air

Vacuum

(a) Based on EDC interface.
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TABLE 2 CO 2 COLLECTION SUBSYSTEM INTERFACES

EDC

CO 2

H2

Water

Flow Rate, kg/s (Lb/Day)

11.56 x 10 -6 (2.200)

-6
0.16 x I0 (0.031)

-6
0.10 x 10 (0.019)

Percent

97.8

1.4

0.8

Molecular Sieve

CO 2

02

N2

Water

Steam Desorbed Solid Amine

CO 2

02

N 2

Water

11.56 x 10 -6 (2.200)

0.02 x 10 -6 (0.004)

0.08 x 10 -6 (0.016)

Trace (Trace)

Ii.56 x 10-6 (2. 200)

0.05 x 10-6 (0.010)

0.26 x 10-6 (0.050)

0.37 x 10-6 (0.070)

99.0

1.0

94.4

0.5

2.1

3.0
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The water electrolyzer is designed so that the required water flow into the

system is electrolyzed once through, thereby eliminating the need for a

condenser/separator or a water recycle loop. From the water electrolyzer, the

product 09 is plumbed directly to the SX-I exhaust gas interface; byproduct H^
is plumbe8 through a solenoid valve, SVI08, to the SX-1 exhaust gas interface_

Carbon Dioxide Electrolyzer and Recycle Loop

The feed gases are introduced through solenoid valve SVI04 which remains open

during normal operation. The recycle loop control technique has been designed

to handle the expected fluctuations in feed gas flow from the EDC CO 2 Collection
System. The COo electrolyzer current will vary, dependent on recycle loop

pressure as senged by pressure transducer PSI02. Increases in the flow rate

of electrolyzable gases (CO 2 and water) to the system are compensated for in

this manner. The gas flow ms directed to the H2 Separator, HSRI01, where the

excess H9 in the feed gas is removed by selective diffusion through palladium/
silver (Pd/Ag) tubes. The gas is then plumbed into the recycle loop and

directed to the CO^ Electrolyzer Modules where CO2 and the water vapor present
in the recycle Ioo_ are electrolyzed. The net reactions are

CO 2 = CO + ½02 CS)

and

H20 = H2 + ½02 (6)

It is important to maintain a minimum of 5% water vapor and/or H2 in the CO 9

electrolyzers since the presence of water va_9_in the CO 9 Electrolyzer ModUle
acts as a catalyst for the cathode reaction. _--J Hydrogefi has a similar

catalytic effect; therefore, any combination of H2 and water vapor equaling 5%

of the fe_igas composition to the C09 Hlectrolyzer Modules will catalyze the

reaction. < J The presence of H2 andTor water is maintained at 5% minimum by
knowing the feed gas composition and by proper sizing of the H^ Separator,

HSRI01. The recycle loop Eases are then plumbed into the "on _ine" CO Dis-

proportionator, COD101 or COD102. Since the CO disproportionation reaction

2C0 = CO2 + C (7)

results in the formation of solid carbon which is collected in expendable

CDCs, provisions are made to direct the recycle loop gas flow to alternate
reactors. In this manner, the spent CDC can be removed and replaced without
interrupting system operation. Hot Gas Valves HV101, HVIO2, HV105 and HV104

are manually operated to direct recycle loop gas flow to the desired CO Dispro-

portionator Since the off-line reactor will contain hazardous CO and H^,

provisions have been made to evacuate and N2 purge the reactor prxor to changxng
the CDC. Electrical three-way valve, SV110, is used to select the reactor to
be evacuated. On signal from the Control Instrumentation, solenoid valve

SVlll is opened, thereby exposing the spent CO Disproportionator to vacuum.

11
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After evacuation is complete, solenoid valve SVIII is closed. Prior to initi-

ating cartridge change, the evacuated reactor is then filled with N2 by opening

solenoid valve SV106 and configuring electrical three-way valve SVI07.

The recycle loop gases, after passing through the "on line" CO Disproportionator,

are directed to the recycle loop H2 Separator, HSRI02, where the H^ formed by
the electrolysis of water in the feed gas is removed. The recycleZloop gas

then flows through the loop to the Recycle Loop Bellows Pump. The Bellows

Pump, PI01, maintains the recycle loop flow rate at 5.08 ipm (0.ii cfm). The

recycle loop gas then exits the Bellows Pump and joins with the feed gas to

complete the cycle•

CO Disproportionator Feed Gas Fill

The feed gas is divided just before entering solenoid valve SVI04. This line
is directed to the CO Disproportionators through solenoid valve SVII4 and

electrical three-way valve SV107. This line allows filling of the off-line

CO Disproportionator with feed gas prior to directing the recycle loop gas
into it. This is done to avoid (i) a sudden drop in recycle loop pressure

which would occur if the recycle loop gas flow was diverted to an evacuated CO

Disproportionator, or (2) a buildup in recycle loop inerts which would occur

if the CO Disproportionator is filled with N2 after CDC replacement.

Nitrogen Purge

The system N2 purge is divided into four flow paths:

I. Through solenoid valve SVI02 and flow restrictor FRI01 for purging

the H2 gas compartment and associated plumbing of the water electro-
lyzer

• Through solenoid valve SVI06, flow restrictor FRI02 and electrical

three-way valve SVI07 for purging the spent CO Disproportionator

prior to replacing the CDC. Three-way valve SVI07 is used to direct
the flow to the desired CO Disproportionator

.

•

Through solenoid valve SVI09 and flow restrictor FRI04 for purging

the H2 exit line of the H2 Separator

Through solenoid valve SVI03 and flow restrictor FRI03 for purging

the feed gas inlet line and the recycle loop

Nitrogen is supplied through solenoid valve SVII5 and pressure regulator RE101

for maintaining recycle loop pressure during Standby and Shutdown operating

modes. Regulator RHI01 allow_ N. into the system so as to maintain recycle
loop pressure above 0.17 x 101 N_m _ (0.25 psig).

The flow orifices used in the N2 purge lines are incorporated to establish the

N2 flow rate and to provide overpressure protection for downstream components•

12
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Pressure regulator REI02 and solenoid valve SVI05 were added to the system to

perform three functions:

.

To provide recycle loop overpressure protection. When _ressgre
transducer PS102 senses pressure greater than 1.21 x l0 T N/m- above

ambient (1.75 psig), solenoid valve SVI05 is opened and pressure

regulator RE102 al_ows _he recycle loop to vent until the pressure

reaches 0.689 x 101 N/m- above ambient (I.0 psig). At the same time,

the Control Instrumentation automatically configures the system to

the Standby Mode.

,

To allow recycle loop N2 purge. In order to purge the recycle loop,
the recycle loop pump is turned off and solenoid valve SVI05 is

opened, allowing N 2 flow throughout the l_op. 2Pressure regulator
RE102 maintains backpressure at 0.70 x i0 _ N/m above ambient

(I.0 psig).

, To allow the SX-I to operate when interfacing with the feed gas of

the Molecular Sieve and Steam-Desorbed Solid Amine CO 2 Collection

Systems. Since the gas interface from these systems contains N2,

and since N 2 does not enter into any of the loop reactions, a recycle

loop pressure rise will occur as a result of the N 2 buildup in the
recycle loop.

It will be necessary to periodically vent the recycle loop when

simulating the Molecular Sieve and Steam-Desorbed Solid Amine inter-

face conditions. In order to accomplish this, solenoid valve SV105

will be periodically opened to relieve increases in recycle loop

pressure due to the buildup of inerts (N?). This sequence will be

initiated manually. Pressure regulator RE102 _ill _llow the gas to
vent until the loop pressure reaches 0.70 x 10_ N/m above ambient

(i.0 psig). At this point the system will be manually configured

back to the normal operating mode.

Gas Exits and Sample Ports

The 02 outlet lines of the Electrolyzer Subassembly are kept separate for

experxmental test purposes. The 02 outlet lines from the COeelectrolyzers
are equipped with backpressure regulators (RE103, REI04 and RE105), pressure

relief check valves (CV102, CV103 and CV104) and manual shutoff valves (VI01,

VI02 and VI03) The ba_kpre_sure regulators in the 02 exit lines are included
to maintain a ;.05 x 10 _ N/m" above ambient (1.5 psig) O^ backpressure. This

z
is required to minimize the AP across the electrolyzer drums and to ensure

that the pressure on the electrolyzer drum is greater on the 02 side. These

provisions were incorporated due to the concern about the abilxty of _he 2
electrolyzer drum's precious metal seal to withstand up to a 1.2 x 10 _ N/m

above ambient (1.75 psig) internal to external AP. Check valves O/102, CVIOS

and CVI04 are incorporated to provide overpressure protection in the event ^

the pressure regulators fail closed. The check valves open at 1.58 x 10_ N/m z

above ambient (2.0 psig). The 02 exit lines from the four electrolyzer modules

15
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are plumbed separately so that an individual CO 2 Electrolyzer Module could be
isolated from the system if desired. This provides operating flexibility in

the event of a cell failure in any one of the CO 2 Electrolyzer Modules. The

exit from the water electrolyzer is equipped with a solenoid valve, SVI08.

T_is valve is used to seal the H2 lines and gas cavities of the Water Electro-
lyzer Module when it is not in operation. Gas sampling ports are provided

downstream of the CO9 Electrolyzer Modules (VI04), downstream of the CO

Disproportionators (V105) and downstream of the H2 Separator (VI06).

Instrumentat ion

The SX-I schematic shows the locations of all system sensors. These include

thermocouples, thermistors, pressure transducers, differential pressure trans-

ducers, speed sensor, current and voltage sensors and valve position indicators.

These are further discussed in the Instrumentation Section of this report.

System Operating Modes

The SX-I has four steady-state operating modes and one semiautomatic mode

(CDC Change Mode) associated with the replacement of the CDC. The four

steady-state modes are Shutdown, Standby, Normal and Purge. A description

of each operating mode follows.

Shutdown Mode

In the Shutdown Mode the system is not performing the function of converting

CO 9 and water vapor to 02. In addition, all system heaters for the Electrolyzer
Moaules, CO Disproportionator, H^ Separators and the Water Feed Mechanism are
turned off. The Electrolyzer Modules have their currents removed, valves

are in their de-energized state which closes the gas supply valves to pre-

vent the flow of supply gas and the Recycle Loop Bellows Pump is not circulating

gas within the recycle loop. The output from the H2 Separator is isolated
from vacuum; however, the recycle loop is exposed to vacuum via a backpressure

regulator, RE102 (see Figure 2), to ensure that, e_en when in the Shutdown
Mode, loop pressure does not exceed 1.21 x 10 N/m above ambient (1.75 p_ig). 9

As insurance that the recycle loop pressure does not drop below 0.17 x 10_ N/m"

above ambient (0.25 psig), the loop is opened to the N? purge gas supply via
another pressure regulator, RE101. From the Shutdown Rode a significant period

of time must elapse before the system can be operated because the hot
components have to be slowly heated to operating temperature.

Standb Z Mode

In the Standby Mode, as in the Shutdown Mode, the system is not performing the

function of converting CO_ and water vapor to 02 . The major difference between
the two modes is that in Standby the heaters are operating, keeping the Electro-

lyzer Modules, CO Disproportionator, H2 Separators and the Water Feed Mechanism

at temperature and the Recycle Loop BeIlows Pump is not operating. Two other

variations are that the output from the H_ Separator (SVII2) is opened to
vacuum and the recycle loop is isolated f_om vacuum (SV105} under the normal

14
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steady=state cond_tion_ of this mode. Only if the recycle loop pressure

exceeds 1.21 x 10 _ N/m" above ambient (1.75 psig) will this loop be opened to
vacuum via backpressure regulator RE102. All other functions hold true as

outlined above in the Shutdown Mode definition. From the Standby Mode the
system can be put into operation in less than five minutes.

Normal Mode

In the Normal Mode, the system is performing its intended function of convert-

ing the CO 2 and water vapor to 02 . All monitored parameters are within allow-
able limits.

As the system operates, carbon will build up in the CO Disproportionator that

is "on line." This CO Disproportionator will have to be isolated from the

recycle loop and a second CO Disproportionator put "on line." This semiauto-

matic CO Disproportionator exchange mode is detailed below. 4 Alsg, in the
Normal Mode, if the recycle loop pressure exceeds 1.21 x i0 N/m" above

ambient (1.75 psig), the loop will be opened to vacuum via a backpressure

regulator, RE102.

Purge Mode

In the Purge Mode the system is not performing the function of converting CO 2
and water vapor to 0^. All N^ purge valves (SVII3, SVI02, SVI03, SV109,

SV107, SV106) are co_figured _o permit a N 2 purge to all recycle loop com-

ponents and the H 2 exhaust line of the Water Electrolyzer Module. Solenoid

valve SVII3 remains open at the conclusion of the N2 Purge sequence and
thereby allows RE101 to compensate for any underpressure situation in the

recycle loop. Similarly, SV105 remains open and allows RE102 to compensate

for any overpressure condition that might occur in the recycle loop.

Carbon Deposition Cartridge Change Mode

In addition to the operating modes described above, the SX-I contains a semi-

automatic CO Disproportionator Cartridge Change Mode. This mode provides for

isolating a carbon-filled CO Disproportionator from the recycle loop and put-

ting the second unfilled CO Disproportionator "on line." The operating sequence

for the semiautomatic CO Disproportionator Cartridge Change is discussed later

in this report as part of the Control Instrumentation Description.

SYSTEM HARDWARE DESCRIPTION

The SX-I consists of 58 components mounted on a welded unistrut frame. Figure 3

is a front view of the assembled SX-I. Table 3 lists the SX-I components.

Six of these were designed, fabricated and assembled under the program. The

remainder of the components were off-the-shelf and were selected for the

application. These are solenoid valves, pressure regulators, pressure trans-

ducers, check valves, Hot Gas Valves, a Bellows Pump and flow restrictors.

Following is a discussion of the six major components designed, developed,

fabricated and assembled during the program.
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GSA Cabine

Monitor

Instrumentation
Control

Instrumentation

Hot Gas

Valve

CO Disproportionator
Furnace Access Doors

Electrolyzer
Furnace Access Door

GSA Cabinet

- ii̧ : i

FIGURE 3 FRONT VIEW OF ASSEMBLED SX-I
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TABLE 3 SX-I COMPONENTS LIST

Item

1

2

3

4

5

6

7

8

9

I0

Ii

12

13

14

15

16

17

18

19

Quantity

Required

3

1

2

2

1

1

1

8

4

2

4

7

5

5

1

1

S

2

3

Part Number

CEI01 thru CEI03

HE101

COD101, COD102

HSRI01, HSRI02

CI01

MI01

PI01

SVI03, SVI05,

SVI06, SVI02,

SVI09, SVIII,

SVII3, SVII4

SVI01, SVI04,

SVI08, SVII2

SVI07, SVII0

HVI01 thru HVI04

VI01 thru VI07

CVI01 thru CVIOS

RE101 thru RE10S

PR101

FB101

FR101 thru FR105

PS102, PS105

PS101, PS10S,
PSI04

Description/Title/Name

Module, Electrolyzer, CO 2

Module, Electrolyzer, Water

Disproportionator, CO

Separator, H2

Instrumentation, Control

Instrumentation, Monitor

Pump, Bellows

Valve, Shutoff, Electrical

Normally Closed

Valve, Shutoff, Electrical,

Normally Open

Valve, 3-Way, Electrical

Valve, Hot Gas

Valve, Shutoff, Manual

Valve, Check

Regulator, Pressure

Regulator, Pressure, Pressure
Referenced

Mechanism, Water Feed

Restrictor, Flow

Transducer, Pressure

Transducer, Pressure Differential
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Hlectrolyzer Subassembly

The electrolyzer subassembly consists of four major parts. The electrolyzer

furnace, with built-in heaters and insulation; three CO2 Electrolyzer Modules;
one Water Hlectrolyzer Module; and the associated plumblng and wiring
connections.

Electrol_zer Furnace

The function of the electrolyzer furnace is to heat and maintain the C09 and

Water Electrolyzer Modules at their operating temperature. The assembly

drawing showing the location of the electrolyzer furnace is shown in Figure 4.

The materials of construction and operating characteristics of the electrolyzer

furnace are listed in Table 4. The furnace is a self-supporting unit consisting

of a welded structural frame, gas manifolding, heaters, insulation, stainless

steel covers and module access doors. The frame is used to support the modules,

heaters and gas manifolding. The electrolyzer modules are supported inside

the Inconel muffles (horizontal tubes) with the ceramic heaters attached to

the outside. The muffle support plates are welded to the 502 stainless steel

unistrut channel. The process gas manifolding is welded to the frame channel

with a tube fitting at each end. The tube fitting and metal bellows allow for

a frame and module differential thermal expansion and simple module removal

from the electrolyzer furnace. The stainless steel frame is completely enclosed

with insulation for minimum heat loss. The only contact the frame has with

the external covers is at the mounting pads on the bottom surface and at the

flanged front face with the access doors. The insulation material is protected

externally by the stainless steel covers and internally at the service area

with a muffle support plate and front face flanges. The insulation thickness

was selected to give an external cover operating temperature of less than 522K

(120F). The insulation thickness required to achieve this outer skin tempera-

ture was calculated to be 20.5 cm (8.0 in). The furnace assembly includes

Bakelite terminal blocks for power and thermocouple lead connections on the

back cover.

Electrolzzer Modules

The function of the electrolyzer modules is to convert CO 2 to CO and 02 and

to convert water into H2 and 02.

The CO_ and Water Electrolyzer Modules that were incorporated into the electro-

lyzer _ubassembly were based on the results of a development effort sponsored

by the NASA Ames Research Center under Contracts NAS2-2870, NAS2-4843 and

NAS2-6412. This work was reported to result in CO9 electrolysis cells that

provide breathable O_ containing less than 1% impu_ities and that operate at

100% Faradaic curren_ e_{}_iency. A 12-celi (six-drum) module has demonstrated
operation for i01 days. _ _ The CO and Water Electrolyzer. Modules contain.
eight electlyzer drums. Each elect_olyzer drum contaxns two electrolysxs cells

as shown in Figure 5. The electrolyzer drum is a cylinder with a diameter of

6.5 cm (2.48 in) and a height of 1.0 cm (0.59 in). Each cell contains two fully

stabilized zirconium oxide electrolyte disks with active platinum (Pt) elec-
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Figure 4 - continued
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TABLE 4 SX-I ELECTROLYZER FURNACE

OPERATING CHARACTERISTICS AND MATERIALS

Characteristics

Overall Size, cm (In)

Power (Heaters), V

Temperature, K (F)

Process Gas Tube Interfaces, cm (In)

Access Area Opening, cm (In)

Description

125.9 x 59.2 x 80.8

(49.5 x 23.3 x 31.8)

230, 1400 W/each

1123 (1562)

0.950 (0.375) stainless steel

tube fittings

87.0 x 33.0 (34.2 x 13.0)

Materials

Frame

Covers, cm (In)

Insulation

Heaters

Fittings, cm (In)

Standard Unistrut 302 stainless

steel channel A5000 and AI000,
Inconel 600 muffles

0.127 (0.050) 304 stainless steel

Standard Johns-Manville Micro

Quartz

Standard Lindberg Model 50531,

Type 5712-SP, Ceramic Clam Shells,

eight required

Standard Swagelok stainless steel,

0.950 (0.375) union tube fittings
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trodes integrally 9ttached t 9 both sides of each disk. The active area of

each cell is 20 cm- (3.I0 in-). The electrolyzer subassembly contains four

electrolyzer modules. Three CO 2 Electrolyzer Modules are plumbed into the
recycle loop. The fourth electrolyzer module is fed separately with water

vapor and is utilized to electrolyze water in a once-through fashion. The

operating characteristics of the electrolyzer modules are listed in Table 5.

The electrolyzer modules are packaged by enclosing a set of eight drums in a

gas-tight 504 stainless steel or Inconel 600 can. The heating elements and all

furnace insulation material are external to the:94_. This packaging tecnique

has been described as the Internal Can Concept.
t_2

A photo of a completed electrolyzer module is shown in Figure 6. The inlet

and outlet manifold tubes shown are constructed with bellows to allow easy

electrolyzer module removal and replacement within the confinement of the

fixed system plumbing. They also allow for thermal deflections that occur as

the system comes up to temperature. The 02 outlet manifold tube is a branch
of one of the electrical conductor support tubes described next. The nine tap

wires and two current conductors come out of the modules in groups of 4, 4,

and 3 in the three electrical conductor tubes indicated. They are supported

and insulated from each other in the system manifolding by the use of four-hole

alumina insulators. These insulators run the full length of the tube. The

thermocouple wells are close-ended and spaced at the proper axial distance

inside the can assembly. Since they are close-ended tubes and the thermocouples

enter from outside of the module, no penetration or discontinuity in the

electrolyzer module boundary exists. This feature allows for in situ mainte-

nance of thermocouples without the need for cooling down the system and disas-

sembling the electrolyzer modules. The major components of the module, as

shown separated in Figure 6, are the module can assembly, including the 07

manifold end cap, thermocouples, and electrical connectors and the electrSIyzer

drums and manifold assembly. The module can assembly seal is an Inconel

O-ring seal that is held in place and compressed by the use of 12 equally

spaced Inconel screws holding the cover to the module can assembly. The seal

for the electrical connectors is a bulkhead seal located at the end of the

electrical conductor tubes. This seal is made by use of a crushable lava

spacer. The thermocouples do not require a boundary seal since they are

externally inserted into the tubes that are welded to the end cap. The electro-

lyzer drum supports and the two alumina manifold tube supports are both made

from fired lava.

The materials used in the electrolyzer module assembly were chosen for their

resistance to the expected recycle loop gases (CO, CO 9 , H_ and water) at the

maximum operating temperature of I173K (1652F). Wher_ required, electrical

conductivity and thermal expansion considerations were included. Inconel 600

is used for the can assembly and the 1.27 cm (0.5 in) diameter external manifold

tubes and electrical conductor support tubes. The 0.95 cm (0.375 in) diameter

internal manifold tubes are made out of alumina tubing closed on one end. The

tubulations used to connect the drums to the alumina manifold tubes are Pt/10%

iridium (Ir) alloy. The tap wires and conductors are made of gold (Au)/3.5%

Pd alloy.
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TABLE 5 ELECTROLYZER SUBASSEMBLY

PERFOR_tANCE CHARACTERISTICS

Carbon Dioxide Electrol_zer

Feed Gas Composition, kg/s (Lb/Hr), %

CO
CO 2

wHiter

Feed Gas Temperature, K (F)

Feed Gas Pressure, N/m 2 (Psia)

9.317 x I0-_

5.217 x I0-_

0.010 x i0-_

0.010 x i0-b

(0.7389), 51.60
(0.4137), 45.40
(0.0019), 2.86
(0.0008), 0.14

628 to 658 (670 to 725)

10.3 x 104 to 11.0 x 104

(IS to 16)

Current (Total), Cell A 102

Current Density (48 Cells), mA/cm 2 (ASF)

Current per Module, A 2.1

Operating Temperature, K (F)

106 (98.5)

1143 to 1163 (1598 to 1634)

Water Electrolyzer

Feed Gas. kg/s (Lb/Hr)

Water Vapor

Feed Gas Temperature, K (F)

Feed Gas Pressure, N/m 2 (Psia)

Current (Total), Cell A

Current Density (16 Cells), mA/cm 2 (ASF)

Current per Module, A

Operating Temperature, K (F)

0.285 x I0 -5 (0.542)

397 to 402 (255 to 264)

lO.l x 10 4 to 11.7 x 10 4

(14.7 to 17)

30.5

97 (90. l)

1.9

1143 to 1163 (1598 to 1654)
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CO DISPROPORTIONATOR

The function of the CO Disproportionator is to convert the SX-I system recycle

loop CO gas to CO 2 and solid carbon in the presence of a carbon steel (AISI 1025)
catalyst, with the addition of heat. The reaction taking place in the CO Dis-

proportionator is

2CO = CO 2 + C (8)

A disassembled CO Disproportionator is shown in Figure 7. The CO Dispropor-
tionator consists of a housing assembly and a replaceable CDC assembly. The

CDC consists of a front and rear end cap filter and screen, a catalyst star,

the CDC housing, and the cover assembly with handles provided for ease of CDC

removal and replacement. For a cartridge change, the CDC is pulled from the

housing assembly utilizing the two handles. The CDC is then disassembled and

the formed carbon and remaining catalysts are disposed of. A new catalyst
star is obtained and the CDC is reassembled and inserted into the housing

assembly. The process gas enters the CO Disproportionator at the inlet manifold

tube shown in Figure 7. It then passes through the front cartridge end cap,

filter and screen, and reacts in the presence of the star-shaped catalyst.

The solid carbon forms on the surface of the star catalyst with the formed CO 2

passing through the rear cartridge end cap, filter and screen, and into the

recycle loop. The main CO Disproportionator seal is an O-ring seal made from

copper-clad Inconel. This fits between the cover assembly and the cylindrical

outer housing. When the quick-disconnect clamp is fastened around the cover

and main body assembly, the seal is formed. Leakage or parallel passage of

gas between the CDC and housing assembly is prevented by two wire seals placed

around the ends of the CDC assembly. The other end of the CO Disproportionator

housing assembly is secured by welding, thus no seals are required at this
end.

A literature survey was performed to determin@Rw_tl_terials could be used

for construction of the CO Disproportionator. _U'_'_ Based on material

availability, ease of fabrication and cost, electroless nickel-plated stain-
less steel was selected as the base construction material. As a result, all

metal components other than the star catalyst have been plated with 0.0025 cm
(0.001 in) thick electroless nickel to prevent the CO Disproportionation
reaction from occurring on these surfaces. Table 6 lists the CO Dispropor-

tionator operating characteristics and materials.

H2 SEPARATOR

The function of the He Separator is to remove excess H from the feed and
recycle loop gases. Figure 8 shows a sectioned view oF the completed design.

The process gas enters the vertical tube and exits through the horizontal tube
at the right of the assembly. A vacuum is drawn through the horizontal tube
at the left side of the assembly and on the inside of the commonly manifolded

Pd/Ag tubes. The Pd/Ag tubes are concentrically packed and welded into a

header assembly which is metal O-ring-sealed and bolted to the external housing.
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TABLE 6 SX-I CARBON MONOXIDE DISPROPORTIONATOR AND

CATALYST ACTIVATION FURNACE OPERATING CI_RACTERISTICS AND MATERIALS

Characteristics

Overall Size, cm (In)

Power (Heaters), V

Temperature, K (F)

Process Gas Tube Interface, cm (In)

Description

24.76 x 76.2 (9.75 x 30.0)

115, 875 W/each

823 (1022)

0.950 (0.375) stainless steel

tube fitting

Materials

Housing, cm (In)

CDC Housing, cm (In)

CDC Catalyst, cm (In)

CDC Filter

CDC End Caps, cm (In)

CDC Screen, cm (In)

Heaters

Fittings, cm (In)

Standard 20.3 (8.0) Schedule 40

304 stainless steel pipe, elec-

troless nickel plated (0.0025

(0.001))

0.150 (0.059) 316 stainless steel,

electroless nickel plated (0.0025

(0.001))

Standard 0.013 (0.005) AISI 1025

sheet steel

Standard Fiberfrax LO-CON ceramic

fiber

20.3 (8.0) round 304 stainless

steel, electroless nickel plated

(0.0025 (0.001))

Stainless steel 8 x 8 mesh,

electroless nickle plated (0.0025

(0.001))

Standard Lindberg Model 50821, Type
8708-SP, Ceramic Clam (1/4) Shell,

twelve required

Standard Swagelok union tee

600-3-316, electroless nickel

plated (0.0025 (0.001))
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Based on the theoretical expression, relating diffusion rate, Pd/Ag tube

diameter, Pd/Ag tube wall thickness, and Pd/Ag tube length, it was determined

that 12.19 m (40 ft) of 0.159 c_._0.062 in) diameter and 0.0076 cm (0.003 in)
wall Pd/Ag tubes were required. _I°) This requirement was based on a 75%

Pd/25% Ag alloy and an operating temperature of 616K (650F).

One common design is used for both the recycle loop and the feed gas H_

separators. Figure 9 is a picture of a disassembled H^ Separator. Th_ H_

Separator operating characteristics and materials of c_nstruction are lis_ed

in Table 7.

WATER FEED MECHANISM

The function of the Water Feed Mechanism is to provide a stable and constant

flow of super-heated steam to the Water Electrolyzer Module. The steam is

required as a source of additional 0o to make up the difference between the O_

available from CO O and that metaboli£ally required by man. The Water Feed -
Mechanism consist_ of the following major components: heater, tube, orifice,

thermocouples and temperature control which is part of the Control Instrumen-
tation. The Water Feed Mechanism consists of three specific stages: preheater,

flash orifice, and a boiler. In the preheater stage, the water temperature is

raised _long its length to a liquid saturation temperature of 407K at 31.0 x
I0 N/m (274F at 45 psia) and maintains that level at the orifice entrance by

a thermocouple and temperature control. This corresponds to Point I on

Figure I0, which is a plot of temperature versus distance along the flash

boiler tube. The sgper-_eated water is flashed through the orifice to the low
pressure, 10.H x l0T N/m (15 psia), side of the Water Feed Mechanism (Point 4).

As the water passes through the orifice, it undergoes a phase change from liquid

to vapor. However, not all the liquid is transformed into vapor at the orifice

and as a result more heat energy must be applied in the boiler section to

achieve a complete change to the vapor phase (Point 5). However, a large enough

phase change of liquid to vapor is achieved at the orifice (90% by volume) to

yield a uniform and constant steam flow mode. A drawing of the Water Feed
Mechanism with callouts describing the individual components is shown in

Figure II.

CONTROL INSTRUMENTATION

The primary functions of the Control Instrumentation are to provide the logic

and programming for system mode transitions, to control Normal Mode operation

by automatically varying the CO 2 Electrolyzer Module's current as a function
of recycle loop pressure, and to control all other parameters critical to the

system operation, such as Electrolyzer Module temperature, CO Disproportionator

temperature, H. Separator temperature, Water Feed Mechanism temperature, Water

Electrolyzer _odule current, and Recycle Loop Bellows Pump speed. A listing

of the parameters, their controlling functions, and all internal adjustments,

is presented in Table 8. The SX-I has four steady-state operating modes and
one semiautomatic mode. The latter is associated with the replacement of the

CDC. The allowed mode transitions are described in Figure 12. The flow chart

describing the sequencing for mode transitions is presented in Appendix I.
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TABLE 7 SX-1 }{YDROGEN SEPARATOR
OPERATING C}tARACTERISTICS AND MATERIALS

Characteristics

Overall Size, cm (In)

2
Hydrogen Diffusion Area, cm --[In 2)

Process Gas Inlet

Temperature, K (F)
Pressure, N/m 2 (Psia)

Flow Rate, Sccm (Scfm)/Min

Composition, % V

Power, W

Tube Interface, cm (In)

Description

8.6 x 63.0 (3.4 x 25.0)

606.0 (94.0)

616 (650) 4
10.3 x 10- (15)

Feed Gas

505.6 (o.o18)
75.20 CO_
1.67 Water

23.13 H2

Recycle Gas

2696.2 (0.095)
32.19 CO

64.39 CO

3.42 H^
0 Wate_

175

0.95 (0.375) diameter stainless

steel tubing

Materials

Housing

Separator Tubes

O-Rings

tteaters

304 stainless steel

Pd/Ag Alloy (75/25)

Advanced Products Company,
I375-3-3-CP-PF

Lindberg Model 50031, Type 77-SP
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TABLE 8 SX-I STEADY STATE CONTROLLED PARAMETERI

.Controlled Parameter

.

(a)
FBIO1 Flash Boiler

Temperature

. HE101 Water Electrolyzer

Temperature

. CEI01 COn Electrolyzer
z

Temperature

, CEI02 CO 2 Electrolyzer
Temperatfire

(a) See Figure 2, page 10, for s

Controlling Function

Error signal representing the differ-

ence between the desired set point

temperature and the true temperature

as measured by thermistor TS 127.

Proportional Control.

Error signal representing the differ-

ence between the desired set point

temperature and the true temperature

as measured by thermocouple TS I01.

Proportional Control.

Error signal representing the differ-

ence between the desired set point

temperature and the true temperature

as measured by thermocouple TS 105.

Proportional Control.

Error signal representing the differ-

ence between the desired set point

temperature and the true temperature

as measured by thermocouple TS 109.

Proportional Control.

nsor locations.

Adjustments

Desired set point temperature is a

potentiometer setting inside the

system control instrumentation
enclosure.

Desired set point temperature is a

pot_ntiometer setting inside the

system control instrumentation

enclosure. Each of the four

electrolyzers has a separate set

point adjustment.

Desired set point temperature is a

potentiometer setting inside the

system control instrumentation

enclosure. Each of the four

electrolyzers has a separate set

point adjustment.

Desired set point temperature is a

potentiometer setting inside the

system control instrumentation

enclosure. Each of the four

electrolyzers has a separate set

point adjustment.

continued-



Controlled Parameter

S. CEI03 CO_ Electrolyzer
z

Temperature

o CODIOI CO Disproportionator

No. I Temperature

. COD102 CO Disproportionator

No. 2 Temperature

. HSRI01 H^ Separator
z

Temperature

SX-I STEADY STATE CONTROLLED PARAMETERS

Controlling Function

Error signal representing the differ-

ence between the desired set point

Adjustments

Desired set point temperature is a

potentiometer setting inside the

•temperature and the true temperature

as measured by thermocouple TS 113.

Proportional Control.

system control instrumentation

enclosure. Each of the four

electrolyzers has a separate set

point adjustment.

Error signal representing the differ-

ence between the desired set point

temperature and the true temperature
as measured by thermocouple TS 117.

Proportional Control.

Error signal representing the differ-
ence between the desired set point

temperature and the true temperature
as measured by thermocouple TS 121.

Proportional Control.

Error signal representing the d_ffer-

ence between the desired set point

temperature and the true temperature

as measured by thermocouple TS 126.

Proportlonal Control.

Desired set point temperature is a

potentiometer setting inside the

system control instrumentation
enclosure. Each of the two

disproportionators has a separate

set point adjustment.

Desired set point temperature is a

potentiometer setting inside the

system control instrumentation
enclosure. Each of the two

disproportionators has a separate

set point adjustment.

Desired set point temperature is a

potentiometer setting inside the

system control instrumentation

enclosure. The feedback temperature

measurement may come from either
TS 126 or TS 128.

continued-



Table 8 continued

o

•Controlled "Parameter

'I0.

I_101 Water Electrolyzer

Voltage/Current

C_I01CO_ Electrolyzer
Voltage/Current

SX-1 STEADY STATE CONTROLLED PARAMETERS

Controlling Function

Manual set point for desired applied

voltage.

0

Manual set point for desired max.

current limit.

Manual set point for desired max.

voltage limit.

Current controlled by recycle loop

pressure in the automatic mode, by•a

manual set point in the manual mode.

Proportional Control.

Adjustments

Desired module applied voltage is a

potentiometer setting within the
control instrumentation enclosure.

Desired module max. current limit

is a potentiometer setting within
the control instrumentation

enclosure.

Desired module max voltage limit is a

potentiometer setting within the

control instrumentation enclosure.

In the automatic mode, there are

potentiometer settings to adjust the

steady state current/pressure

operating point, the current vs

pressure loop gain, and the desired

max. current limit. All these adjust
ments are within the control instru-

mentation enclosure. In the manual

mode, there is a potentiometer settin

for the desired electrolyzer current.
This too is within the control

instrumentation enclosure.

continued-



L,I
Oo

Control"led Parameter

ii. CEI02 CO? Electrolyzer

Voltage/Cfirrent

12. CEI03 CO? Electrolyzer
Voltage/Current

SX-I STEADY STATE CONTROLLED PARAMETERS

Controlling Function

Manual set point for desired max.

voltage limit.

"Current controlled by recycle loop

pressure in the automatic mode, by a

manual set point in the manual mode.

Proportional Control

Manual set point for desired max.

voltage limit.

Current controlled by recycle loop

pressure in the automatic mode, by a

manual set point in the manual mode.

Proportional Control.'

Adjustments

Desired module max. voltage limit is a

potentiometer setting within the
control instrumentation enclosure.

In the automatic mode, there are

potentiometer settings to adjust the

steady state current/pressure

operating point, the current vs

pressure loop gain, and the desired

max current limit. All these adjust-

ments are within the control

instrumentation enclosure. In the

manual mode, there is a potentiometer

setting for the desired electrolyzer
current. This too is within the

control instrumentation enclosure.

Desired module max. voltage limit is a

potentiometer setting within the
control instrumentation enclosure.

In the automatic mode, there are

potentiometer settings to adjust the

steady state current/pressure

operating point, the current vs

pressure loop gain, and the desired
max current limit. All these

adjustments are within the control
instrumentation enclosure. In the

manual mode, there is a potentiometer

setting for the desired electrolyzer

current. This too is within the

control instrumentation enclosure.

continued-



Table 8 continued

.Controlled Parameter

13. .PlOl Recycle Loop Pump Speed

14. P102 Recycle Loop Pump Speed

SX-I STEADY STATE CONTROLLED PARAMETERS

Controlling Function

Error signal representing the differ-

ence between the desired set point

pump speed and the true pump speed as

measured by speed sensor SS 101.

Error signal representing the differ-

ence between the desired set point

pump speed and the true pump speed

as measured by speed sensor SS 102.

Adjustments

Desired set point pump speed is a

potentiometer setting inside the

system control instrumentation
enclosure.

Desired set point pump speed is a

potentiometer setting inside the

system control instrumentation

enclosure.
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The flow chart consists of the main program which calls upon five separate

subroutines describing the Purge, Normal, Reactor Change, Standby, and Shutdown

sequences. In order to follow the flow chart it is necessary to refer to the

system schematic which is included as Figure AI-I. The operations described

in the flow chart are completely automatic with the exception of the Reactor

Change Mode and system startup. In these two cases manual intervention is

required. For the Reactor Change Mode, manual intervention is required to

configure the Hot Gas Valves in the recycle loop to allow CO 2 Disproportionator
switchover and servicing. The manual operations are described in detail in

Appendix I.

To start the system, the operator first depresses the Purge Pushbutton and
then the Normal Pushbutton which initiates the automatic sequence as described

in Appendix 1. The pushbuttons are shown in Figure 15 which is a picture of

the completed Control Instrumentation. The Control Instrumentation is contained
in a pull-out drawer mounted within the framework of the SX-1. The system

control panel is the front of the drawer. The Control Instrumentation contains
20 printed circuit (PC) cards and these are described in Table 9. The Control
Instrumentation also contains four power supplies, 28 photoisolated power

relays, 19 manual override switch assemblies, a shutdown counter and an
elapsed time meter, and four electrical connectors. The Control Instrumenta-

tion's front panel is pictured in Figure 14. This photograph shows the recessed
panel with the safety cover removed, revealing a cluster of manual override
switches aml current control potentiometers and the pumpspeed control potenti-
ometer. Also indicated on the front panel are the Mode Command Pushbuttons,

the CO Disproportionator status indicator and pushbuttons, and the elapsed
time meter and event counters. Also present is an override indicator which is

used to indicate that any one of the system prime movers are in a manual
override condition and a Lamp Test Pushbutton to verify the operation of the

lamps in the indicators.

MONITOR INSTRUMENTATION

The SX-1 Monitor Instrumentation functionally provides for three things: (1)

the display of Trend and Fault Analysis information, (2) the protection of the
system by automatic shutdown or standby, and (5) the conditioning of system
sensor signals prior to their being sent to ground support equipment for

display in engineering units. In the first of these functions, the Monitor
Instrumentation collects signals from the important system sensors, conditions

these sensoT signals and displays the results with illuminated indicators on
the Performance Trend and Fault Analysis Panel. The Performance Trend and

Fault Analysis Panel is shown in Figure 15, which is a picture of the Monitor

Instrumentation package. The indicators on the Performance Trend and Fault

Analysis Panel provide the following information:
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TABLE 9 CONTROL INSTRUMENTATION PC CARD LIST

4_
L_

Qty.

4

1

Card No.

A13

ACI7

ACI8-1

AC18-2

AC18-3

AC19

AC20

AC21

AC23

AC24

AC25

Title Functions

Current/Voltage Control (Electrolyzer Modules) Controls current in electrolyzer cells

Automatic Slew Control

Temperature Control (Electrolyzer Modules)

Temperature Control (Flash Boiler)

Temperature Control (CO Disproportionators

and H2 Separator)

Power Switch/Latch

Pump Speed Control

Maln Sequencer "A" (Input Multiplexer)

Main Sequencer "C" (Sequence Generator)

Main Sequencer "D" (System Clocks & Timers)

Main Sequencer "E" (Output Decoder/Driver)

Generates 276K (37.4F)/Min ramp for

Electrolyzer Module temp. control.

Controls Electrolyzer Module temp.

Controls Flash Boiler temperature.

Controls CO Disproportionator and H2
Separator Temperatures.

Power driver stage and enable/disable

logic electrolyzer module current
controllers.

Controls the speed of the recycle

loop pump motor.

Multiplexes and latches input signals

for sequence generator.

Generates sequential control of system

Generates system clock and required
timeouts.

Decodes inputs from sequence generator

and drives required output.
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Condit ion Color Response

Normal Green No response needed.

Caution Amber Condition developing that could result in a

hazardous situation; predetermined response

necessary but not necessarily time critical.

Warning Flashing Red Hazardous condition developing in which urgent

action is required by the operator (crew) to

avoid an alarm or other serious situation.

Predetermined action by operator required, but

by direction of lead engineer rather than by
automatic reaction.

Alarm Red Condition exists causing automatic system

shutdown. If a shutdown does not occur, emergency

response by the operator is required and pre-
determined reaction is necessary.

The Performance Trend and Fault Analysis Panel provides the operator of the

system with an advanced warning of a parameter moving out of its acceptable

operating range and thus allows for the operator to modify system operation to

correct for this parameter deviation. The panel further aids detecting and

isolating faults in the system when problems do occur.

In the second of these functions, the Monitor Instrumentation provides for

automatic system shutdown or standby when a parameter or group of parameters

deviate from safe ranges and when such deviations can potentially cause personnel

injury or equipment damage. Table 10 lists the SX-I shutdown causes, possible
malfunctions that can cause such shutdowns, shutdown trip levels and the final

mode in which the system is automatically placed.

The final function of the Monitor Instrumentation is to condition sensor

signals for the ground support display. This conditioning consists of ampli-

fication, attenuation, filtering, and scaling of sensor information so that

the ground support data can be displayed in engineering units. Table Ii shows

the parameters monitored during SX-I operation, and whether these parameters
are monitored on the Performance Trend and Fault Analysis Panel or the Ground

Support Panel. The component and sensor identification numbers listed in
Table 11 refer to the system schematic which is presented in Figure 2.

The Monitor Instrumentation electronics is contained in a pull-out drawer

which is mounted within the framework of the SX-I. The Performance Trend and

Fault Analysis Panel is the front of the drawer. Contained within the drawer

are a11 required PC cards, all bias power supplies, all Monitor Instrumentation

input/output connectors and 25 switches which allow the system operator to
individually inhibit each of the 25 system shutdown protections. Table 12

lists the types of PC cards in the Monitor Instrumentation electronics, the

quantity of each type, and their monitor functions.
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TABLEi0 SX-I SHUTDOWNPROTECTION

Shutdown Cause

1) High HE101 water electrolyzer

temperature

2) Low HE101 water electrolyzer

Possible Malfunctions

Controller failure, sensor
failure

Controller failure, sensor

Trip Level

1133 K(IS80F)

1113 K(1544F)

temperature

3) High CE101 CO2 electrolyzer
temperature

4) Low CE101 CO2 electrolyzer
temperature

5) High CEI02 CO 2 electrolyzer
temperature

6) Low CE102 CO2 electrolyzer
temperature

7) High CEI03 CO2 electrolyzer
temperature

8) Low CE103 CO2 electrolyzer
temperature

failure, heater failure

Controller failure, sensor
failure

Controller failure, sensor

failure, heater failure

Controller failure, sensor
failure

Controller failure, sensor

failure, heater failure

Controller failure, sensor

failure

Controller failure, sensor

failure, heater failure

1133 K(1580F)

ii13 K(lS44F)

l133..K(1S80F)

1113 K(lS44F)

1133 K(IS80F)

1113 K(lS44F)

9) High CODIOI'CO disproportion-

ator temperature

i0) Low CODI01 CO disproportion-

ator temperature

Controller failure, sensor
failure

Controller failure, sensor

failure, heater failure

848 K(lO67F)

798 K(977F)

Final Mode

Shutdown

Standby

Shutdown

Standby

Shutdown

Standby

Shutdown

Standby

Shutdown

Standby

continued-



Table i0 - continued

oo

' ' ' , I

Shutdown Cause

ii) High COD102 CO disproportion-

ator temperature

12) Low COD102 CO disproportion-

ator temperature

13) High HSR101H 2 separator
temperature

14) High HSRI02 H2 separator
temperature

IS) High CI01 control instru-

mentation temperature

16) Low FBIOI flash boiler

temperature

17) High drum voltage in HE101,

CE101, CEI02 or CEI03

18) High AP across CE101, CE102
and CE103

19) Low AP across CE101, CE102
and CEI03

Possible Malfunctions

Controller failure, sensor
failure

Controller failure, sensor

failure, heater failure

Controller failure, sensor
failure

Controller failure, sensor
failure

Controller failure, sensor

failure

Controller failure, sensor

failure, heater failure

Electrolyzer drum failure

Blockage in electrolyzer .
module

Leak in the electrolyzer

module, low flow through the

modules due to a system
blockage

Trip Level

848 K(lO67F)

798 K(977F)

693 K (788F)

658 K(725F)

338 K(149F)

383 K (230F)

4.4 VDC

2.49 x 103N/m 2

(10 in of H20 )

2.49 x 102N/m 2

(1 in of H20 )

Final Mode

Shutdown

Standby

Shutdown

Shutdown

Standby

Standby

Standby

Standby

continued-



Table i0 - continued

Shutdown Cause

20) High recycle loop pressure

21) Low recycle loop pressure

22)

23)

HighA P across COD101 when
it is "on line"

HigbA P across COD102 when
it is "on line"

24) High HSRI01 output pressure

25) Low drum voltage in HE101,

CEI01, CEI02, or CEI03

Possible Malfunctions

System blockage, build up of

non-electrolyzable gas in

the loop, electrolyzer

malfunction, H2 separator
failure

Leak in the system, controller

failure, H2 separator failure

Blockage in the CO dispro-

portionator

Blockage in the CO dispro-

portionator

H2 separator failure, H2 line

blockage, ground support

vacuum pump failure

Electrolyzer drum failure

Trip Level

1.21 x 104N/m 2

above ambient

(1.75 Psig)

1.72 x 103N/m 2

above ambient

(0.25 Psig)

TBD

TBD

3.45 x 103N/m 2

(0.5 Psia)

2.0 VDC

Final Mode

Standby

Standby

Standby

Standby

Standby

Standby



TABLEii SX-I MONITOREDPARAMETERS

ul
O

Monitored Parameter

1) HE101 (a) water

electrolyzer oven

temperature

2) HEIOI water electro-

lyzer module temp-
erature

3) CEIO1 CO2 electro-
lyzer oven temper-
ature

4) CEIOI CO. electro-

lyzer module temp-

erature

5) CE102 CO2 electro-
1yzer oven temp-
erature

6) CEI02 CO^ electro-

lyzer module temp-

erature

Ca)

SX-1 Trend and Fault Analysis Panel

" ._ e of Dis la Comments

Two sets of four level

trend and fault indica-

tors, one each for high

and low temperature

Two sets of four level

trend and fault indica-

tors, one each for high

and low temperature

Two sets of four level

trend and fault indica-

tors, one each for high

and low temperature

All functional iter numbers are referenced

to Figure 2, page i0

From TS102

From TSI06

From TS110

SX-I Ground.-S_ Panel

T e of Dis la Comments

Digital panel meter

temperature readout

Digital panel meter

temperature readout

l%ermocouple test

points

Digital panel meter

temperature readout

Digital panel meter

temperature readout

Thermocouple test

points

Digital panel meter

temperature readout

Digital panel meter

temperature readout

From TSI01 via

control instru

mentation

From TSI02 via

monitor instru

mentation

From TSI03 and

TSI04

From TSI05 via

control instru

mentation

From TSI06 via

monitor instru

mentation

From TSI07 and

TSI08

From TSI09 via

control instru,

mentation

From TSII0 via

monitor instru.

imentation

continued-



Table 11 - continued

Monitored Parameter

7) CE103 CO2 electro-
1yzer oven temp-
erature

8) CE103 CO^ electro-
lyzer module temp-
erature

9) COD101 CO dispro-

portionator oven

temperature

I0) COD101 CO dispro-

portionator inter-

nal temperature

Ii) COD 102 CO dispro-

portionator oven

temperature

12) CODI02 CO dispro-

portionator inter-

nal temperature

SX-1 Trend and Fault Analysis Panel

" __/_e of Disla_ Comments

Two sets of four level

trend and fault indi-

cators, one each for

high and low temperature

Two sets of four level

trend and fault indi-

cators, one each for

high and low temperature

Two sets of four level

trend and fault indi-

cators, one each for

high and low temperature

From TSII4

From TSII8

From TS122

SX-1 Ground Sup.port Panel

Type of Display Comments

Digital panel meter

temperature readout

Digital panel meter

temperature readout

Thermocouple test

points

Digital panel meter

temperature readout

Digital panel meter

temperature readout

Thermocouple test

points

Digital panel meter

temperature readout

Digital panel meter

temperature readout

Thermocouple test

points

From TSII3 via

control instru-

mentation

From TSII4 via

monitor instru-

mentation

From TSII5 and

TSI16

From TSII7 via

control instru-

mentation

From TSII8 via

monitor instru-

mentation

From TSII9 and

TSI20

From TSI21 via

control instru-

mentation

From TS122 via

monitor instru-

mentation

From TS123 and

TS124

continued-



Table 11 - continued

_O

Monitored Parameter

13) C101 control in-

strumentation temp-
erature

14) HSRI01H separator2
oven temperature

15) HSR101 H_ separator
internalZtemper -

ature

16) HSR102 H separator2
oven temperature

17) HSR102 H^ separator• z
internal tempera-
ture

18) FB101 flash boiler

temperature

19) HE101 water elec _

trolyzer individual

drum voltages (8)

SX-1 Trend and Faul_sis Panel

" _pe of Disla_ Comments

A set of four level trend

and fault indicators for

high temperature

A set of four level trend

and fault indicators for

high temperature

A set of four level trend
and fault indicators for

high temperature

A set of four level trend
and fault indicators for

low temperature

Two sets of four level

trend and fault indi-

cators, one each for high

and low drum voltage.

The eight individual

drums are scanned by a

multiplexer.

From TS125

From TS129

From TS130

From TS127 via

control instru-

mentation

From voltage

taps VS-101-1

through VS-
101-8.

SX-I Gro_ort Panel

Type of Display Comments

Digital panel meter

temperature readout

Digital panel meter

temperature readout

Digital panel meter

temperature readout

Digital panel meter

temperature readout

Analog panel meter

temperature readout

Analog panel meter
voltage readouts for
each drum

From TS126 via

control instru-

mentation

From TS129 via

monitor instru-

mentation

From TS128 via

control instru-

mentation

From TSI30 via

monitor instru-

mentation

From TS127 via

control instru-

mentation

From voltage

taps VS-101-1
through VS-101-
8 via monitor

instrumentation

continued -



Table ii - continued

Monitored Parameter

20) CEIO1 CO^ electro-
lyzer individual

drum voltages (8)

21) CEI02 COl electro-
lyzer individual

drum voltages (8)

22) CE103 CO^ electro-
lyzer individual

drum voltages (8)

23) HEI01 water elec-
trolyzer module

voltage

24) CEIO1 CO^ electro-
lyzer module volt-

age

25) CEI02 CO^ electro-
lyzer module volt-

age

SX=l Trend and Fault Anal__sis Panel

" _/_0e of Display Comments

Two sets of four level

trend and fault indi-

cators, one each for

high and low drum volt-

age. The eight indivi-
dual drums are scanned

by a multiplexer.

Two sets of four level

trend and fault indica-

tors, one each for high

and low drum voltage.

The eight individual drums

are scanned by a multi-

plexer.

Two sets of four level

trend and fault indi-

cators, one each for

high and low drum volt-

age. The eight indivi-
dual drums are scanned

by a multiplexer.

From voltage

taps VS-I02-1

through VS-I02-8

From voltage tap_

VS-I03-1 through
VS-I03-8.

From voltage

taps VS-I04-1

through VS-
I04_8

SX-I

Analog panel meter

voltage readouts for
each drum

Ground Sup2ort Panel
Comments

iFrom voltage ta_

IVS-102-1 throug|
VS-I02-8 via

monitor instru-

mentation

Analog panel meter

voltage readouts
for each drum

Analog panel meter

voltage readouts
for each drum

Digital panel meter

voltage readout

Digital panel meter

voltage readout

Digital panel meter

voltage readout

From voltage

taps VS-I03-1

through VS-I03-

8 via monitor

instrumentation

From voltage

taps VS-I-4-1

through VS-
104-8 via mon-

itor instru-

mentation

From VSI01 via

control instru-

mentation

From VSI02 via

control instru-

mentation

From VSI03 via

control instru-

mentation

continued-
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Table 11 - continued

Monitored Parameter

26) CEI03 CO. electro-

lyzer module volt-

age

27) HE101 water elec-

trolyzer module

current

28) CEI01 CO. electro-

lyzer module cur-

rent

29) CE102 CO. electro-

lyzer module cur-

rent

30) CE103 CO^ electro-
lyzer module cur-
rent

31) AP across EEl01

thrnugh CE103 CO 2
electrolyzers

32). Recirculation loop

pressure

33) _P across COD101

CO disproportion-
ator

SX-1 Trend and Fault Anal__sis Panel
_e of D_ Comments

Two sets of four level

trend and fault indica-

tors, one each for high
and low BP

Two sets of four level

trend and fault indi-

cators, one each for high
and low pressure

A set of four level trend

and fault indicators for

high AP

From PSI01

From PSI02

From PSI03

SX-1

of D_

Digital panel meter

voltage readout

Ground Sup_port Panel
Comments

Digital panel meter
current readout

Digital panel meter
current readout

Digital panel meter
current readout

Digital panel meter
current readout

Analog panel meter
AP readout

Afialog panel meter
pressure readout

Analog panel meter

pressure readout

From VSI04 via

control instru,

mentation

From CSI0I via

control instru,

mentation

From CSI02 via

control instru,
mentation

From CSI03 via

control instru.

mentation

From CSI04 via

control instru-

mentation

From PSI01 via

monitor _nstru.

mentation

From PS102 via

monitor instru-

mentation

From PS103 via

monitor instru-

mentation

continued-



Table 11 - continued

Monitored Parameter

34) AP across CODI02

CO disproportion-
ator

35) Vacuum pressure of
HSR101 and HSRI02

H2 separators

36) P101 bellows pump

drive motor speed

SX-1 Trend and Fault_alysis Panel

of Disla__====_ Comments

A set of four level trend

and fault indicators for

high AP

A set of four level trend

and fault indicators for

high vacuum Pressure

From PS104

From PS105

SX-1 Ground_Su ort Panel

Type of Display Comments

Analog panel meter
_ressure readout

Analog panel meter

speed readout

From PSI04 via

monitor instru-

mentation

From SSl01 via

control instru-

mentation
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TABLE 12 MONITOR INSTRUMENTATION

PRINTED CIRCUIT CARD LIST

Qty. Card No.

1 B2

14 B6

8 B7

4 BCI4

1 BCIS

8 BCI6

1

37

Title

Thermistor Temperature
Monitor

0 to S VDC Monitor

Voltage Level Monitor

Multiplexer Switches

Multiplexer Timing

Thermocouple Tempera-
ture Monitor

Ii Logic Interface

Total Monitor Printed Circuit Cards

Monitor Function(s)

High instrumentation

temperature

Low electrolyzer, dispropor-
tionator and flash boiler

temperatures, high and low CO_
electrolyzer AP, high and low z

recycle loop pressure, high

disproportionator Ap and high

H2 separator vacuum pressure.

High and low electrolyzer

drum voltages

Scan of electrolyzer drum

voltages

Scan of electrolyzer drum

voltages

High electrolyzer, dispropor-

tionator and H2 separator
temperatures

Input/output interface
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GROUND SUPPORT ACCESSORIES

Various items of support equipment are required to simulate the actual space-
craft interfaces of the SX-I. These GSA, shown in Figure 16, are needed to

compensate for the absence of spacecraft cabin resources (power, water, space

vacuum and N2 purge) to synthesize the exhaust gas from the various CO
collection s_bsystems over the operating ranges required during the su{system

parametric testing, and to monitor subsystem operation throughout the test

program. Four distinct GSA were provided: (I) Ground Checkout Unit (GCU), (2)

Fluid Supply Unit (FSU), (3) Space Vacuum Simulator (SVS), and (4) Gas Products

Monitor (GPM).

Ground Checkout Unit

The GCU provides for the analog readout of parameters necessary to monitor the

performance of the subsystem during the program test phase. Since the SX-I

does not require the GCU instrumentation to perform its intended function, the

GCU has been designed only to read out important parametric test data. The

front panel of the GCU, shown in Figure 17 is called the Parametric Data

Display Panel. It contains five digital panel meters which display Electrolyzer

Module voltage, Electrolyzer Module current, Electrolyzer Module temperature,

CO Disproportionator temperature and H9 Separator temperature. Adjacent to

the digital panel meters are thumbwheel switches which allow data from each of

the various system components to be individually displayed. The GCU also

contains 57 edge-type analog panel meters. Thirty-two of these meters are
used to monitor individual electrolyzer drum voltages (eight drums in each of

the four electrolyzer modules). The remaining five meters are used to monitor

CO2 Electrolyzer differential pressure, recycle loop pressure, CO Dispropor-
tionator differential pressure, Recycle Loop Bellows Pump speed and Water Feed

Mechanism temperature.

Also provided on the Parametric Data Display Panel is a temperature output
terminal and corresponding selector switch which provides thermocouple con-

nectors to allow monitoring of the system's auxiliary temperature sensors.

The auxiliary temperature sensors are mounted at various places in the Electro-
lyzer Modules and CO Disproportionators. Since these signals are not processed
by the Control or Monitor Instrumentation, the sensor information must be

monitored by an external instrument. The temperature selector shown on the

GCU front panel chooses which sensor information is presented at the output
connectors.

The final data display on the GCU is the subsystem's status summary. This

display provides information summarizing the status (shutdown, alarm, warning,

caution or normal) of the parameters monitored by the Monitor Instrumentation.

An operator can quickly check on qualitative system operation by observing the

system status summary display.

Fluid Supply Unit

The FSU is designed to simulate the feed gas mixtures from any of the three

CO2 collection subsystems, the EDC, the molecular sieve and the steam desorbed
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SVS

FIGURE 16 SX-I GROUND SUPPORT ACCESSORIES
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solid amine, which could interface with the SX-I. The unit consists of mass

flow controllers, mass flowmeters, deionized water accumulator, a gas humidifier,

pressure regulators and various sensors, fittings and tubing. A schematic of

the FSU is presented in Figure 18. Hydrogen, N 2, CO 2 and 02 are supplied to

the FSU where they are regulated to simulate the exhaust from any CO 2 collection

subsystem. Check valves in the H^ and O^ lines insure that no upstream mixing
z.

can occur in case of mechanical fallure. The gases are mixed and humidified

to a selected water vapor content and then flow through a moisture trap, dew

point sensor and into th_ SX-I. The feed gas delivery pressure can be varied

between !01 and 136 kN/m" above ambient (0 and 5 psig).

Distilled water is supplied to the SX-I Water Feed Mechanism by filling an

accumulator and then pressurizing it with air. This allows the water to be

delivered to the Water Feed Mechanism at a preset flow rate without entrapped

air. Provisions have been included to allow for the refilling of both the

feed gas humidifie_ and distilled water accumulator. The FSU supplies the

SX-I with 508 kN/m- above ambient C30 psig) N 2 for startup, CDC replacement and
shutdown. In addition, if the SX-I experiences a total power failure, the FSU

contains a battery-powered emergency purge unit which will supply N2 to the

subsystem for two minutes.

Space Vacuum Simulator

A SVS was designed to furnish the SX-I with the vacuum normally encountered

when the system is venting to space. The SVS consists of two mechanical type

vacuum pumps, two vacuum gauges, and associated tubing and fittings. One pump

maintains a vacuum on the H 2 Separator which remains constant and unaffected

by pressure fluctuations during subsystem operation. The other pump is used

to evacuate the CO Disproportionator prior to cartridge replacement. The CO

Disproportionator is first evacuated then refilled with N 2, thereby eliminating

the possibility of toxic gases escaping during the maintenance activities.

Gas Products Monitor

The GPM allows the exhaust gases from the SX-I to be monitored and sampled.

The H 2 and O exhaust lines from the Water Electrolyzer Module and the Oo
lines from t_e CO? Electrolyzer Modules are plumbed into the GPM so that_they

can either be vented or fed directly into a gas chromatograph for analysis;

thereby allowing the product gases to be sampled without affecting the operation

of the subsystem. Ports are also provided to sample the recycle loop gases at

the CO Disproportionator, the CO Electrolyzer and H 2 Separator, and the CO

Disproportionator vent gas. Provisions to monitor gas temperatures at these
locations are also included. The feed gas humidifier and feed gas delivery

temperatures in the FSU, the recycle loop samples and the CO Disproportionator

vent temperatures can be displayed. Hydrogen and CO sensors were placed near

the system to insure personnel and equipment safety.

PRODUCT ASSURANCE PROGRAM

The Product Assurance Program encompassed the activities associated with

Quality Assurance, Reliability, Safety and Maintainability.
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Quality Assurance

The Quality Assurance activities for the SX-I consisted of the following:

i ° Performance of receiving, in process and final inspections of all

SX-I components received and manufactured.

° Participation in the design phase of the SX-I program to insure the

incorporation of Quality Assurance considerations in component and

system design.

. Assurance of configuration control by monitoring the Drawing and

Change Control Procedures.

4. Monitor of all SX-I testing.

5. Preparation and maintenance of system and component specifications.

. Preparation of a failure reporting procedure which was to be utilized

during the SX-I Endurance Testing.

Reliability

The Reliability activities carried out during the SX-I development program

consisted of performing a Failure Mode Effects and Criticality Analysis (FMECA)

and participation in component and system design to insure that concepts such

as overdesign, derating and redundancy were incorporated.

For the F_CA that was performed on the SX-I system, each component, as shown

on the system schematic, was analyzed with regard to its failure modes, the

failure effect on component/functional assembly, the failure effect on the

system, the failure detection method, and crew action required. A criticality

level was assigned to each failure mode as described below:

Criticality

A single failure which could cause loss of personnel.

IIa A single failure whereby the next associated failure could

cause loss of personnel.

lib A single failure whereby the next associated failure could

cause return of one or more personnel to earth or loss of

subsystem function(s) essential to continuation of space

operations and scientific investigation.

III A single failure which could not result in loss of primary or

secondary mission objectives or adversely affect crew safety.
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The analysis revealed that the SX-I contains criticality Ila failure modes.

These failure modes are the external leakage failure mode of all components

which carry H 2 or CO. If these failure modes are allowed to persist, dangerous
levels of H^ or CO could be attained in the cabin atmosphere. The next

associated _ailure which could cause loss of personnel would be the failure of

a detector whose function would be to detect the leak and initiate system

shutdown and N 2 purge. For flight applications, this hazard would be reduced

by incorporating redundant H 2 and CO level detectors. An example of a FMECA

is presented in Figure 19.

Safety

A major effort was made during the design phase of the SX-I to include those

safety features which would minimize danger to personnel. Consideration was

given to the operational functions of the system and to all maintenance

functions that must be performed. In addition, equipment protection features

were incorporated in the safety design criteria to insure that off-design

system operation would not result in damage to system components. Fail-safe

characteristics, safety interlocks and system shutdown instrumentation were

included in the system design to insure safety.

The safety design criteria utilized during the design, fabrication, assembly

and testing of the SX-I is divided into three sections: System Design Guidelines,

Mechanical Design Guidelines, and Electrical Design Guidelines.

System Design Guidelines

i. Personnel safety will not be compromised in meeting system performance

requirements.

. A single failure in one component will not cause successive failures

in other components.

. A single failure of any component will not expose personnel to the

possibility of injury.

. All hazardous failure modes that are identified in the FMECA will be

eliminated by incorporation of safety interlocks, instrumentation

and/or system shutdown.

. The system will be designed so that all maintenance can be accomplished

without hazard to personnel.

. Service points for the fluids and gases involved will be designed

with positive protection by location, connector size or type to

prevent connection to incorrect fluid and gas service lines.

o All components that require protective devices will be interconnected

in such a way that failure of a single element will not fail both

devices.
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PAGE 1 REVISION

_.,i/c S//SICII_, _1'/,/¢,,o FAILURE MODE, EFFECTS oF 2 LTR

CLEVELAND, OHIO 44122 (_ CRITICALITY ANALYSIS DATE

TITLE _ SUBSYSTEM

H 2 SEPARATOR, ITEM NO. HSRI01 and HSRI02 C LOOP )([3 COMPONENT

PART

NO.

HSR-

I01

and

HSR-

i l02

]

RELIABILITY
N Ah/*E

LOGIC NO.

N/A H 2 Separator

FUNCTIOrJ

To remove H. from the SX-I feed gas and

recycle Ioo_ gas.

FAILURE MODE AND CAUSE: a CRITICALITY_
a. Control or monitor temperature sensor fails low, caused by open

couple or electronic malfunction. III

b. Control or monitor temperature sensor fails high, caused by shorted

couple or electronic malfunction, ib. III

c. Heater fails. Ic. III

d. Internal leakage-recycle loop gases to H 2 vent, caused by O-ring it

leak, weld degradation or Pd/Ag tube rupture. (continued on page 2) jd. III

FAILURE EFFECT ON COMPONENT/FUNCTIONAL ASSEMBLY:

a. If the control sensor fails low the instrumentation, upon receiving a low tem-

perature signal will increase heater current, if the monitor sensor fails low there

will be no effect except that if the control sensor also fails low (double failure)

the separator would continue to heat without any provisions for shutdown.

b. If the controls sensor fails high, the control instrumentation will decrease

heater current, if the monitor sensor fails high, an automatic system shutdown will

be caused.

c. The heater will no longer maintain the separator temperature.
d. It will be more difficult to maintain H^ vent vacuum.

• . L

e. Recycle loop gas wzll be admztted to the cabin.

FAILURE EFFECT ON SYSTEM/SUBSYSTEM:

a. If the control sensor fails low, a system shutdown will ensue initiated by the

monitor temperature sensor. If the monitor temperature sensor fails low, then the

system will lose its shutdown capability for high H 2 separator temperature and, in

the event of the control temperature sensor also falling low (double failure), there

will he no means for shutdown and the H 2 separator would be damaged by exposure to

high temperature.

b If the control sensor fails high, the temperature of the H_ separator will• L

decrease, its H 2 removal capability will decrease and eventually a subsystem shutdown
(continued on page 21

FAILURE DETECTION METHOD:

a, b, c. Redundant temperature sensor.

d. Recycle loop and separator exhaust pressure sensor.

e. CO and combustible.

CREW ACTION REQUIRED:

a, b, c, d, e. Replacement of separator•

(a) After system cool-down

TIME I
REQD. ]

0.2 I

TIME

AVAI L.

NIA

continued-

FIGURE 19 FAILURE MODE EFFECTS AND CRITICALITY ANALYSIS
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Figure 19 - continued

£i/¢ @stems.IHc.
CLEVELAND, OHIO 44122

- PART

NO.

HSR-

i01

and

HSR-

102

J RELIABILITYLOGIC NO.

N/A

J NAME

H 2 Separator

FAILURE MODE AND CAUSE:

e. External leakage.

NUMBER REVISION LETTER PAGE

FUNCTIOr4

To remove H_ from the SX-I feed gas and

recycle ioo_ gas.

CRITICALITY

e. lla

FAILURE EFFECT ON COMPONE NT/FU NC IIONAL ASSEMBLY:

FAILURE EFFECT ON SYSTEM/SUBSYSTEM:

caused by high recycle loop pressure, will occur. If the monitor temperature
sensor fails high, a subsystem shutdown would occur.

c. Temperature of H 2 separator will decrease, H 2 removal capacity will also
decrease. Eventual system shutdown will occur because of high recycle loop pressure.

d. Loss of feed gas and recycle loop pressure, a low pressure shutdown would ensue.

e. The recycle loop gases (H_, CO, C02) would be admitted to the cabin atmosphere.

System shutdown initiated by a_bient CO or H 2 level detectors will occur.

FAILURE DETECTION METHOD:

CREW ACTION REQUIRED: TIME TIME

REQD. AVAIL.

DI IGINAE PA Gg
,OF POOR QUALiTy
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o

,

10.

11.

12.

13.

14.

15.

16.

Mounting and connections will be designed so that the component or

its connections cannot be inadvertently reversed.

Manual override techniques will be provided for critical automatic

functions to permit safe operation to shut doom during an emergency.

Since the system will contain hazardous and toxic gases (H 2 and CO)

a N o purge will be incorporated so that a system purge can be

performed prior to startup, after shutdown and prior to performing

maintenance activities.

Hydrogen and CO gas monitors will be installed near the system in

strategic locations to sense for leakage of these hazardous gases.

The units will alarm and the system will be shut down when H 2 and/or

CO concentration reaches dangerous levels.

The system will be designed so that components that are susceptible

to pressure damage are protected. Protection can be by incorporation

of pressure relief valves or system shutdown followed by venting and

N 2 purge.

Overtemperature protection by automatic shutdown will be incorporated

for those components that are susceptible to high temperature damage.

A caution and warning system will be incorporated into the instru-

mentation design to provide an indication prior to occurrence of a

dangerous situation. This will consist of Life Systems' Trend and

Fault Analysis instrumentation.

All known possibilities of human error in system operation will be

eliminated. Accidental activation of system components of the

system itself, which might cause damage, will be given special con-

sideration to minimize or eliminate the possibility of accidental

actuation. Noncritical controls will be located in areas where

accidental actuation is improbable, critical controls will be

protected by a physical guard. Where sequence of operations is

critical, an interlock system which prevents out-of-order manipulation

of controls will be used. All such sequential operations will be

designed so that operation is automatic upon issuing the command to

start up, shut down or to change operating mode. In an override

condition, labels and warnings will be posted to prevent out-of-

sequence operation.

Human engineering consideration will be given to both operation and

maintenance of the SX-I. Special attention will be given to the

handling provisions, visual displays, illumination, and labels. The

company's safety program includes analysis to determine where human

error during operation and maintenance could cause a safety hazard.

This information will be incorporated into the final design to

minimize the chance of human error causing a safety hazard.
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17. Provisions will be included in the system design to insure that the

product 02 gas meets NASA purity requirements. Product 02 purity
will be monitored throughout system testing.

18. The automatic system shutdowns that are projected for inclusion in

the design of the SX-I are listed in Table i0.

Mechanical Design Guidelines

• All high temperature components will be insulated so that the

surface temperature during operation is less than 525K (120F). In

the event this is not practical, then warning signs and a protective

standoff will be incorporated to protect personnel.

. Carbon formation in the recycle loop will be prevented by screening

components for unacceptable materials and replacing materials where

required. Electroless nickel plated stainless steel, Inconel, Monel

and copper are materials which will not catalyze the carbon formation

reaction and will be acceptable for use in the recycle loop.

,

.

.

All moving parts will be shielded to prevent accidental contact with

personnel•

Application of factors of safety typical for aerospace hardware will

be incorporated into the design of structural components and parts.

Sharp edges and corners will be eliminated or will be adequately

covered with a protective cushion to prevent injuries.

6. In order to avoid fatigue failures, the following guidelines will be

' adhered to:

a• Parts will be designed such that residual stress and

surface defects are minimized.

b. Fillet radii will be made as generous as possible•

c. Sharp edges will be broken.

d. Corrosion protection of metals will be considered to avoid

corrosion fatigue problems.

. A procedure for describing the safe handling of the hazardous gases

in the system will be prepared and implemented during the operation
of the system and testing of the various components.

Electrical Design Guidelines

I. All electrical equipment will be enclosed in vented containers.
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_. ° The power supplies utilized in the system will be designed to

accept peak and transients which may occur.

. Circuit breakers will be incorporated in the ground support to

protect electrical equipment from unexpected high current. All DC

supplies in the system will have current limits to prevent component

damage.

4. All electronic enclosures will be grounded.

, Electrical equipment which could contact personnel or other conductive

equipment that could contact personnel will be equipped with current

limiting devices which prevents an injurious current from passing

through the human body. Limiting currents will be as defined in

NASA CR-1205, "Compendium of Human Responses to the Aerospace Environ-

ment," Vol. I, Section 5.

. Electrical connectors, plugs and receptacles will be positively

keyed to prevent incorrect mating with other accessible connectors,

plugs, or receptacles.

. Wherever practical, the "hot" (live) electrical connectors will be

the (female) socket.

. Electrical circuits will not be routed through adjacent pins of an

electrical connector if a short between them will constitute a

failure that could cause a serious disaster.

o Warning labels will be provided on all access panels leading to high

voltages.

Maintainability

The Maintainability features designed and incorporated into the SX-I follow:

i. The SX-I components were overdesigned where possible to preclude

failure of components resulting from operation at or near their

maximum operational tolerance.

1 Automatic control was incorporated into the SX-I to vary C09

Electrolyzer Module current to compensate for variable CO_ reedz
rates and to provide the controlled sequencing of components when

changing from one operating mode to another.

o Performance trend and fault analysis instrumentation was included in

the SX-I to provide advance warning of out-of-specification operating

conditions. This serves to avoid system shutdowns by alerting test

engineers of problems before they degrade system performance.
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. Equipment protection features were included in the system design to

increase the operating life of the SX-I. These include the in-

corporation of safety shutdowns for out-of-tolerance temperatures
and pressures.

. The only identified servicing are the activities associated with the

Reactor Change operating mode and monitoring of the System Status

Summary on the Parametric Data Display Panel. The system was designed

such that the Reactor Changeover does not interrupt system operation.

. The SX-I was packaged for ease of accessiblity to all components

with the exception of the Electrolyzer Module and CO Dispropor-
tionator heaters. A failure of one of these heaters would involve a

significant maintenance activity involving the removal and replace-
ment of insulation.

. A Standby Mode was incorporated in the design to prevent unnecessary

temperature cycling of the SX-I components, in particular, the

Electrolyzer Modules. The Standby Mode is similar to the Shutdown

Mode except all system heaters remain on and the temperatures of all

components are controlled at their normal operation set points.

PROGRAM TESTING

The SX-I testing activity was to consist of a five part effort:

.

2.

3.

4.

5.

Component Checkout and Calibration Tests

Major component DVT
SX-I Checkout and Shakedown Tests

SX-I Parametric Tests

SX-I Endurance Tests

Due to the occurrence of electrolyzer drum leakage, the DVT of the Electrolyzer

Modules and the system checkout, shakedown, parametric and endurance testing
were not performed. The component DVTs that were performed are discussed
below.

Electrolzzer Drum Leak Tests

The Electrolyzer Drums used in the electrolyzer modules were fabricated,

assembled and tested under Contract NAS2-6412. They were to be made available
as Government-Furnished Property (GFP) for assembly into the SX-1Electrolyzer

Modules. Twenty-nine el_olyzer drums were reported as acceptable at the
conclusion of NAS2-6412. "--" Upon receipt of the GFP electrolyzer drums, they

were leak-tested using a At/AP leak test procedure. This procedure involves
pressurizing the electrolyzer drums to 15.2 cm (6.0 in) of water, isolating
the drum being tested and monitoring the time required for the pressure inside

the drum to drop from 15.2 cm (6.0 in) of water to 12.7 cm (5.0 in). Elec-
trolyzer drums taking less than two minutes for the pressure to decrease from

15.2 cm to 12.7 cm (5.0 to 5.0 in) of water are rejected. The electrolyzer
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drums are baked at 423K (302F) prior to the test to insure that condensation

is removed from any microporosity that might be present. If the moisture is

not removed, false high At/AP data can be obtained. The results of the _t/AP

test are presented in Table 13. Thirty-one drums were tested: 6 were accept-

able, 2 were marginally acceptable and 23 did not meet the requirements of the

At/AP test. Since the subject Electrolyzer Drums were previously tested at

the conclusion of NAS2-6412 (approximately 28 months prior to the test reported

here), it appears that either the electrolyzer drum seals are subject to

degradation with time, or at some time during their storage, since the con-

clusion of NAS2-6412, they were inadvertently exposed to an excessive thermal

gradient which deteriorated the precious metal/ceramic seals.

Attempts were made to reseal the electrolyzer drums by placing the drums in a

resealing fixture and then heating them to the brazing temperature, 1353K

(1976F), at a rate not exceeding 3K (5.4F) per minute. Only five of the leaky

Electrolyzer Drums resealed.

It was postulated that if the seal failure was at a metal-to-metal joint, then

the reseal procedure would be successful. However, if the seal failure was at

a precious metal-to-ceramic joint, the reseal furnace run would do no good as

the molten gold braze material would not wet the ceramic.

Hydrogen Separator DVT

The H 2 Separators are used within the SX-I recycle loop and the feed gas line
to remove excess H^ from the respective gas flows A picture of one of the H^

Separators is show_ in Figure 9. A DVT was performed" on the H9 Separators z

which verified that both separators were leak-tight and that t_e performance

of each separator exceeded the design requirement by m_re than 25%. _he

design requirement is a H? separation rate of 0.322 cm_/s (0.68 x 10-_scfm)

when operating at 645K (702F). Summary data is provided in Table 14.

CO Disproportionator DVT

The CO Disproportionator is required in the SX-I to convert the CO formed by

the CO 2 Electrolyzer Modules into carbon and CO 2 for eventual recycling into
the Electrolyzer Modules. The CO Disproportionator is shown in Figure 7. It

was determined during the DVT of the CO Disproportionator that carbon was

formed in areas other than the CDC. That is, disproportionation was taking

place within the inlet tube and the inlet chamber of the CO Disproportionator

prior to full disproportionation within the CDC assembly as planned. These

areas had been electroless nickel plated to prevent carbon formation as

reported previously in the description of the CO Disproportionator. As

indicated, the electroless nickel was selected based on results reported in

the literature in which this coating was used as a protective coating for

preventing carbon formation during the Bosch reaction, which is:

CO 2 + 2H 2 = 2H20 + C
(9)
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TABLE 13 ELECTROLYZER DRUM At/AP TEST RESULTS

Drum No.

Initial At/AP.
Test Result [a)

At/AP Test After .

423K (302F_ Bake ta) Disposition [b)

F-285 < 10 sec

-297 < I0 sec

-288 < 10 sec

-287 >120 sec

(2 min) 81 sec Marginal

-278 < i0 sec

-279 < 10 sec

-271 < 10 sec

-292 < 10 sec
-291 >120 sec >120 sec

(2 min) (2 min) Acceptable
-502 >120 sec >120 sec

(2 min) (2 min) Marginal
-277R < 10 sec

-285 < 10 sec
-265 < 10 sec
-298 < 10 sec
-269Z < 10 sec
-303 < 10 sec
-507 >120 sec

(2 min) 30 sec
-286 >120 sec >120 sec

(2 min) (2 min) Acceptable
-264 < 10 sec
-308 >120 sec >120 sec

{2 min) (2 min) Acceptable
-289 < I0 sec

-295 >120 sec >120 sec

(2 min) (2 min) Acceptable
-284 < 10 sec
-282 >120 sec >120 sec

(2 min) (2 min) Acceptable
-295 < I0 sec

-501 < 10 sec
-294 < 10 sec
-266 < 10 sec
-268 < 10 sec
-281 < 10 sec
-275 >120 sec >120 sec

(2 min) (2 min) Acceptable

(a) Time for pressure inside drum to drop from 15.2 cm (6 in) water

to 12.7 cm (5 in) water.

(b) All those not marked are unacceptable.
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TABLE 14A HYDROGEN SEPARATOR TEST RESULTS SUMMARY (METRIC UNITS)

Product H2 H_ Separator
ZFeed Gas

Data Point Module Module Vacuum,
No. No. Temp., K mm H$ Flow, cm3/s

1 1 645-650 0.50 45.89

2 1 645-650 0.50 45.80

3 I 655-661 0.54 45.87

4 1 655-661 0.54 45.88

5 1 665-678 0.55 45.92

6 1 665-678 0.55 45.84

7 1 617-625 0.38 48.32

8 1 611-617 0.38 48.23

9 2 645-650 NA 45.89

I0 2 645-650 0.35 45.55

Ii 2 645-650 0.35 45.57

12 2 665-672 NA 49.97

13 2 665-678 NA 50.17

14 2 665-672 0.33 51.81

15 2 665-672 0.33 51.73

H2 Separator
Exit Gas

Flow, cm3/s

45.32

45.32

45.16

45.10

45 20

45 20

47.76

47.60

45.48

45 i0

45 15

49.30

49.35

51.20

51.12

H_ Removal

R_te, cm3/s

0.56

0.52

0.68

0.72

0.69

0.65

0.49

0.53

0.41

0.42

0.41

0.67

0.82

0.50

0.50

% Overcapacity

75

62

112

125

115

i00

53

65

28

31

28

109

156

56

56

(a)

(a) % Overcapacity _2 Removal Rate - Desisn H^ Removal Rate f0.322 cm3/s)
: Design H 2 RemovalZRate (0.322 cm3/s) X i00



TABLE 14B HYDROGENSEPARATOR TEST RESULTS SUMMARY (ENGLIGH UNITS)

Data Point Module

No. No.

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 2

l0 2

II 2

12 2

13 2

14 2

15 2

(a) % Overcapacity = H_

Product H 2
Module Vacuum,

Temp., F In Water

700-710 0.268

700-710 0.268

720-730 0.289

720-730 0.289

740-760 0.294

740-760 0.294

650-665 0.203

640-650 0.203

700-710 NA

700-710 0.187

700-710 0.187

740-750 NA

740-760 NA

740-750 0.177

740-750 0.177

H2 Separator H_ Separator H2 Removal
Feed Gas ZExit Gas Rate,

Scfm x 102 Scfm x 102 Scfm x 103

9.723

9.704

9.718

9.721

9.729

9.711

10.237

I0 219

9 722

9 650

9 654

10.587

10.629

10.977

10.959

9.600

9.601

9.569

9.554

9.576

9.575

10.119

10.085

9.636

9.555

9.565

10.445

10.455

10.846

10.830

1.195

1.098

1.439

1.526

1.470

1.383

1.034

1.113

0.855

0.886

0.856

1.423

1.741

1.065

1.054

Removal Rate - Design H2 Removal Rate (0.68 x 10 -3 cfm)

Design H 2 Removal Rate (0.68 x I0-3" _f_ X I00

% Overcapacity

75

62

112

125

115

I00

53

65

28

31

28

109

156

56

56

(a)
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Since the reaction mechanism of the Bosch and CO Disproportionator reactors

are different, a material that retards carbon formation for one reactor may

not for the other. However, it was later established that researchers working

with Bosch reactg[_.were also experiencing carbon formation on electroless
nickel surfaces. < ) The problem was attributed to variations in plating

parameters that were difficult to control.

It was decided that a redesign or a material study would not be implemented

due to the following two reasons: (I) the problem could be adequately handled

by manual removal of carbon during the required carbon change cycles and (2)

work was being done by other NASA contractors on materi_Q_tudies relating to

the Bosch process and other carbon reduction processes. _-_ Thus it was felt

that in the SX-I program, carbon formation on the electroless nickel was not a

problem that required immediate attention.

As sho_cn in Figure 20, the conversion efficiency at an inlet gas flow rate of

3080 sccm (0.1088 scfm) ranged between 40 and 45% over a temperature range of

773 to 843K (952 Io 1058F). This exceeded the reactor^conversion efficiency_ZU)
design goal of 56_ which was previously demonstrated. Data obtained

during testing of the CO Disproportionator for integrated operational testing

is provided in Table 15.

Water Feed Mechanism DVT

The Water Feed Mechanism is used in the SX-I to supply a constant flow of

super-heated steam to the Water Electrolyzer Module. The steam is required as

a source of additional O^ to make up the difference between the 02 available
from CO^_ and that metabo_ically required by a man. A photo of the Water Feed

MechaniC,.test stand is shown in Figure 21. As was noted in the Fourth Quarterly
Report, _-_) problems were incurred which resulted in certain design changes in

the Water Feed Mechanism. The design changes were required to correct the

effect of off-gassing in a 1 g environment to provide for a testing capability

on the ground. Bubbles collected on the water side of the Water Feed Mechan-

ism, thereby affecting the heat transfer area and causing erratic flow fluc-

tuations. With the design changes and the orientation where the water side

of the Water Feed Mechanism is pointed vertically up toward the water to

steam orifice, the gas that is formed during normal operation is ejected

through the orifice and out into the steam line. In this orientation, it

causes no problems to the overall system operation. The temperature gradients

and flow fluctuations that were being caused by erratic flow or expulsion of

the accumulated gas no longer existed, and thus, a more stable system operation
was achieved.

The DVT was completed after the modifications. All the steam flow rate data

collected for the _VT were within the Water Feed Mechanism design range of

2.85 to 5.70 x I0 -v kg/s (0.544 to 1.09 Ib/day). Long term data was consis-

tent as evidenced by Figure 22 which is a plot of Water Feed Mechanism steam

flow rate versus time.
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TABLE 15A CODISPROPORTIONATORTESTRESULTS(METRICUNITS)

"4
O_

Temperatures, K
Internal External Exhaust Exhaust Flow

TC1 TC2 TC3 TC4 TC5 TC6 TC7 Rate, Sccm

Conversion Efficiency Data
Inlet Flow % CO In Conversion

Rate, Sccm Exhaust Efficiency, %

293 293 293 293 293 293 293
f _

775 803 800 577 833 633 2910 3080 43 _a)

788 811 805 575 833 648 713 2730 3080 43

807 833 825 577 855 672 738 2730 3080 43
803 843 835 604 853 674 736 2730 8030 43

802 831 824 591 843 658 736 2730 3080 43

773 838 831 590 853 676 739 2750 3080 40.4

799 833 826 584 853 676 739 2750 3080 35.7 50

800 831 833 583 851 676 733 2780 3080 37

804 839 833 584 852 698 743 2860 3080 27

Exhaust Vent Plugged With Ice At Approximately 2:00 AM, 12/18/74
737 837 829 583 848 693 2750 3080

745 826 828 583 843 692 734 2780

Shutdown

External Thermal Couples (TC4-TC6) Moved
Start Heating

840 837 791 603 793 771 743 2650

System Has Less Than 5% Nitrogen Remaining

773 849 863 (b) 793 790 791 2650
780 848 863 793 789 792 2630

Adjust to Lower Flow and High Temperature
784 850 865 774 781 788 2325

747 826 814 778 795 765 2380

750 837 833 775 772 758 2380

768 831 852 788 777 775

Adjust Flow To 3500 Sccm
789 846 841 783 775 778 3300

3080

3080

3080
2950

2640

2670

2660

3670

35
35

33.1

35. I

35.8

36.6

40.4

41.4

41.4

45.3
41.2

39.8

38.4

Pressure Drop_
Across COD,N/m z

0

49.82

49.82

49.82

49.82

74.73

74.73

124.55

174.37

1295.32

1494.6

24.91

24.91

24.91

24.91

24.91

24.91

24.91

24.91

(a) Determined from inlet/exhaust flow rate

{b) TC4 failed -continued-



Table 15A - continued

Temperatures, K
Internal External Exhaust

TC1 TC2 TC3 TC4 TC5 TC6 TC7

768 841 843 783 773 781

778 837 850 783 775 783

Adjust Flow To Approximately 700 Sccm

Adjust To Recycle Loop Flow Rate

Conversion Efficiency Data
Exhaust Flow Inlet Flow _'CO In Conversion

Rate, Sccm Rate, Sccm Exhaust Efficiency , %

3300 5670 36.9 57.8

3300 3670 36.7 38.2

740 823 821 773 776 759 2750 3060 36.6 38.4

733 790 770 753 736 713 2750 3040 37.8 36.0

698 773 759 768 751 698 2750 3070 35.8 39.8

690 780 773 773 753 695 2780 3110 35.5 40.6

673 770 761 768 741 693 2750 3100 34.3 42.9

678 785 778 773 755 693 2750 3090 35.2 41.1

693 782 773 773 751 693 34 43.4

Adjust Flow To Approximately 750 Sccm

Adjust To Recycle Loop Flow Rate
727 775 759 773 745 689 2610 2950

712 772 758 773 737 690 2650 3000

Purged With Nitrogen and Placed In Standby Mode

Recycle Gas Flow Resumed

689 774 776 793 753 693 2630 2960

702 785 768 775 746 693 2630 2970

Purged With Nitrogen and Placed In Standby Mode

Recycle Loop Gas Flow Resumed
697 791 761 783 755 698 2630 2980

711 845 850 785 775 769 2680 2970

Purged With Nitrogen and Placed In Standby Mode

Recycle Loop Gas Flow Resumed
707 801 792 811 768 705 2650 2980

713 791 777 803 769 706 2650 2980

Purged With Nitrogen and Placed in Standby Mode

Recycle Loop Gas Flow Resumed

696 849 853 791 783 779

Recycle Loop Gas Composition Changed to 19.6% Hydrogen, 8.04% CO

Test Stopped

34.2 43.1
33.7 44

34.7 42
34.2 43.1

Pressure Drop 2
Accross COD,N/m

24.91

24.91

24.91
24.91
24.91
24.91
24.91
24.91
24.91

49.82
49.82

124.55

124.55

33.3 44.8 149.46

37.6 36.6 149.46

35 41.4

34.6 42.3

1569.33

1619.15

2466.09



TABLEISB CODISPROPORTIONATORTESTRESULTS(ENGLISIIUNITS)

Temperatures, F
Internal External Exhaust

_r_ TCI TC2 TC3 TC4 TC5 TC6 TC7

_ Amb Amb Amb Amb Amb Amb Amb

__ 936 986 981 579 1040 680

959 I000 990 576 1040 707 824

993 1040 1026 579 1080 750 869

986 1058 1044 628 1076 754 865

984 1036 1024 604 1058 743 865

!_ 932 1049 1036 603 1076 757 871
979 1040 1027 590 1076 757 871

981 1036 1040 590 1072 757 860

988 1051 1040 590 1074 797 878

Conversion Efficiency Data
Exhaust Flow

Rate, Ft3/Min

Inlet Flow % CO In Conversion

Rate, Ft3/Min Exhaust Efficiency,%

0.1028 0.1088 43

0.0964 0.1088 43

0.0964 0.1088 43

0.0964 0.1088 43

0.0964 0.1088 43

0.0971 0.1088 40.4

0.0971 0.1088 35.7 40

0.0982 0.1088 37

0.0946 0.1088 27

oo

Exhaust Vent Plugged With Ice at Approximately 2:00 AM, December 18, 1975

867 1047 1033 590 1067 788 0.0971 0.1088

882 1027 1031 590 1058 786 862 0.0982 0.1088

Shut Down

External Thermal Couples (TC4-TC6) Moved.

Start Heating
1053 1047 964 626 908 928 878 0.0936 0.1088

System has less than 5% Nitrogen Remaining.

932 1069 1094 (b) 968 963 964 0.0936 0.1088 35

945 1067 1094 968 961 966 0.0929 0.1042 35

Adjust to Lower Flow and High Temperature
952 1071 1098 934 946 959 0.0821 0.0932 33.1

885 1027 1006 941 972 918 0.0840 0.0943 35.1

891 1047 1040 936 930 905 0.0840 0.0939 35.8

923 1036 1074 959 939 936

Adjust Flow to Approximately 0.1236 Ft3/Min.
961 1063 1054 950 936 941 0.1165 0.1298 36.6

923 1054 1058 950 932 946 0.1165 0.1298 36.9

941 1047 1071 950 936 950 0.1165 0.1298 36.7

Adjust Flow to Approximately 0.0247 Ft3/Min.

40.4

41.4

41.4

45.3

41.2

39.8

38.4

37.8

38.2

Pressure Drop

Across COD,In Wate

0

0.2

0.2

0.2

0.2

0.3

0.3

0.5

0.7

5.2

6.0

0.I

0.i

0.i

0.i

0.i

0.i

0.i

0.I

0.I

0.I

(a) Determined from inlet/exhaust flow rate.

(b) TC4 failed. -continued-
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Table 15B - continued

Temperatures _ F
Internal External

TC1 TC2 TC3 TC4 TC5 TC6
Exhaust

TC7

Adjust to Recycle Loop Flow Rate.

Exhaust _low
Rate, Ft /Min

Conversion Efficiency Data

873 1022 1018 932 937 907 0.0971

860 963 927 896 865 824 0.0971

797 932 907 923 892 497 0.0971

783 945 932 932 896 422 0.0981

752 927 910 923 874 788 0.0971

761 954 941 932 900 788 0.0971

788 948 932 932 892 788

Inlet Flow % CO In Conversion

Rate, Ft3/Min Exhaust Efficienc[,%

0.1081 36.6 38.4

0.1074 37.8 36.0

0.1084 35.8 39.8

0.1098 35.5 40.6

0.1095 34.3 42.9

0.1091 35.2 41.4

34.0 43.4

Adjust Flow to Approximately 0.0265 Ft3/Min.

Adjust to Recycle Loop Flow Rate.

849 936 907 932 882 781 0.0922 0.1042

822 930 905 932 867 783 0.0936 0.1059

Purged With Nitrogen and Placed in Standby Mode.

Recycle Gas Flow Resumed.

781 934 937 968 896 788 0.0929 0.1045

804 954 928 936 883 788 0.0929 0.1049

Purged With Nitrogen and Placed in Standby Mode.

Recycle Loop Gas Flow Resumed.
795 964 910 950 900 797 0.0929 0.1052

820 1062 1071 954 936 925 0.0946 0.1049

Purged With Nitrogen and Placed in Standby Mode.

Recycle Loop Gas Flow Resumed.
813 982 966 1000 923 810 0.0936 0.1052

824 964 939 986 925 811 0.0936 0.1052

Purged With Nitrogen and Placed in Standby Mode.

Recycle Loop Gas Flow Resumed.
793 1069 1076 964 950 943

Recycle Loop Gas Composition Changed to 19.6% Hydrogen, 8.04% CO.

Test Stopped

34.2 43.1

33.7 44.0

34.7 42.0

34.2 43.1

33.3 44.8

37.6 36.6

35.0 41.4

34.6 42.3

Pressure Drop
Across COD,In Water

0.i

0.I

0.I

0.I

0.i

0.i

0.I

0.2

0.2

0.5

0.5

0.6

0.6

6.3

6.5

9.9

10.9
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Control and Monitor Instrumentation DVT

The Control and Monitor Instrumentation is used in the SX-I for control of all

heaters, current controls and sequence controls and to monitor the trends of

the system, respectively.

All control PC cards were individually calibrated and checked out on the Life

Systems' special PC card tester. The list of Control Instrumentation PC cards

was presented in Table 9. The control points were set by using simulated

input signals. Next, a wiring continuity check on the Control Instrumentation

backplane and a check of all Control Instrumentation power supplies was performed.
Printed circuit cards were then inserted into the Control Instrumentation

package, one function at a time, to determine that the particular function,

independent of the remainder of the Control Instrumentation, was operating

properly. The CO Disproportionator temperature control cards were set up to

functionally operate the proper heaters. The resulting control character-

istics of temperature versus time can be found in Figure 25. In a like manner,

the electrolyzer module temperature control cards and temperature ramp cards

were checked out and the results are presented in Figure 24. The purpose of

the temperature ramp card is to ensure that the electrolyzer module heat-up

rate is 3K (5.4F)/min. This is necessary to prevent damage to the ceramic

parts of the electrolyzer drums and modules.

The main sequence cards were checked out on the Life Systems special PC card
tester. The memory addresses were simulated with input switches and the

memory outputs were connected to light-emitting diodes (LEDs). A pulse gener-
ator was used to step through the sequence one state at a time. For a given
memory address, the output LEDs were checked for proper ones and zeros accord-

ing to the required bit pattern. The sequence was checked out for proper
operation of all devices in the Purge, Normal, Standby, Reactor Change and
Shutdown Modes.

The last step of the Control Instrumentation DVT included checking out the
Control Instrumentation/SX-1 interface, including all sensor inputs, actuators,

heater outputs and interfaces with the GSA and Monitor Instrumentation.

A wiring continuity check was performed on the Monitor Instrumentation backplane.
All monitor PC cards were individually calibrated and checked out on the Life

Systems' special PC card tester. A list of the Monitor Instrumentation PC
cards was presented in Table 12. The Monitor Instrumentation trip points were
set on the individual cards in accordance with Table 16. This was done by

applying simulated input signals and adjusting the appropriate potentiometers
accordingly. All normal, caution, warning and alarm indicaters were checked
for proper operation at the levels indicated in Table 16. Table 17 lists the

value in engineering limits that correspond to the voltage trip points. The
final step in the Monitor Instrumentation test included checking out the

integration of the Monitor Instrumentation with the remainder of the SX-1

system.
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TABLE 16 MONITOR INSTRUbIENTATION VOLTAGE TRIP POINTS

Carbon Dioxide Electrolyzer Caution Warning Alarm

Module 1

High Voltage 3.600 4.000 4.400

Low Voltage 3.000 2.500 2.000

High Temperature 4.300 4.350 4.375

Low Temperature 4.200 4.150 4.125

Module 2

High Voltage 3.600 4.000 4.400

Low Voltage 3.000 2.500 2.000

High Temperature 4.300 4.350 4.375

Low Temperature 4.200 4.150 4.125

Module 3

High Voltage 3.600 4.000 4.400

Low Voltage 3.000 2.500 2.000

High Temperature 4.300 4.350 4.375

Low Temperature 4.200 4.150 4.125

High gP 1.250 2.000 2.500

Low AP 0.500 0.475 0.125

Water Electrolyzer

High Voltage 3.600 4.000 4.400
Low Voltage 3.000 2.500 2.000
High Temperature 4.300 4.350 4.375

Low Temperature _ 4.200 4.150 4.125
Low Water

Feed Temperature 0.877 0.700 0.550

CO Disproportionator

Reactor 1

High Temperature 3.730 3.799 3.833

Low Temperature 3.533 3.433 3.333

High AP 0.500 0.750 1.500

Reactor 2

High Temperature 3.730 3.799 3.833

Low Temperature 3.533 3.433 3.333

High AP 0.500 0.750 1.500

continued-
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Table 16 - continued

Hydrogen Separator

Section 1

High Temperature

Section 2

High Temperature

High H 2 Outlet Pressure

Recycle Loop

High Pressure
Low Pressure

Instrumentation

High Control Temperature

Caution

2.630

2.630

1.500

1.200

0.750

3.540

Warning

2.730

2.730

2.000

1.400

0.500

3.700

Alarm

2.800

2.800

2.500

1.500

0.250

3.868
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TABLE 17A MONITOR INSTRUMENTATION TRIP POINTS (METRIC UNITS)

Carbon Dioxide Electrolyzer

Module 1

High Voltage, V

Low Voltage, V

High Temperature, K

Low Temperature, K

Module 2

High Voltage, V

Low Voltage, V

High Temperature, K

Low Temperature, K

Module 3

High Voltage, V

Low Voltage, V

High Temperature, K

Low Temperature, K

High AP, 2
Low AP, N/m

Water Electrolzzer

High Voltage, V

Low Voltage, V

High Temperature, K

Low Temperature, K %

Low Water Feed

Temperature, K

CO Disproportionator

Reactor 1

High Temperature, K

Low Temperature, K

High AP, N/m 2

Reactor 2

High Temperature, K

Low Temperatgre, K

High AP, N/m"

Caution Warning Alarm

3.6 4.0 4.4

3.0 2.5 2.0

1133 1143 1148

1133 1103 1098

3.6 4.0 4.4

3.0 2.5 2.0

1133 1143 1148

1113 1103 1098

3.6 4.0 4.4

3.0 2.5 2.0

1133 1143 1148

1133 1103 1098

1245 1990 2490

498 473 374

3.6 4.0 4.4

3.0 2.5 2.0

1133 1143 1148

1113 1103 1098

396 389 383

833 843 848

803 788 773

498 747 1475

833 843 848

803 788 773

498 747 1475

continued-
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Table 17A - continued

Hydrogen Separator

Section I

High Temperature, K

Section 2

High Temperature, K

High H2 Outlet Pressure, N/m 2

Recycle Loop

High Pressure, N/m 2

Low Pressure, N/m 2

Instrumentation

High Control Temperature, K

Caution

668

668

2070

8270

5170

325

Warning

683

683

2760

9650

3450

331

Alarm

693

693

3450

10300

1720

338
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TABLE 17B MONITOR INSTRUMENTATION TRIP POINTS (ENGLISH UNITS)

Carbon Dioxide Electrolyzer

Module 1

High Voltage, V

Low Voltage, V

High Temperature, F

Low Temperature, F

Module 2

High Voltage, V

Low Voltage, V

High Temperature, F

Low Temperature, F

Module 3

High Voltage, V

Low Voltage, V

High Temperature, F

Low Temperature, F

High AP, In of Water

Low AP, In of Water

Water Electrolyzer

High Voltage, V

Low Voltage, V

High Temperature, F

Low Temperature, F
Low Water Feed

Temperature, F

CO Disproportionator

)
Reactor 1

High Temperature, F

Low Temperature, F

High AP, In of Water

Reactor 2

High Temperature, F

Low Temperature, F

High AP, In of Water

Caution Warning Alarm

3.6 4.0 4.4

3.0 2.5 2.0

1580 1598 1607

1544 1526 1517

3.6 4.0 4.4

3.0 2.5 2.0

1580 1598 1607

1544 1526 1517

3.6 4.0 4.4

3.0 2.5 2.0

1580 1598 1607

1544 1526 1517

5.0 8.0 i0.0

2.0 1.9 1.5

3.6 4.0 4.4
3.0 2.5 2.0

1580 1598 1607
1544 1526 1517

253 241 230

1040 1058 1067

986 959 932

2.0 3.0 6.0

1040 1058 1067

986 959 932

2 3 6

continued-
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Table 17B - continued

Hydrogen Separator

Section 1

High Temperature, F

Section 2

High Temperature, F

High H2 Outlet Pressure, Psi

Recycle Loop

High Pressure, Psi
Low Pressure, Psi

Instrumentation

High Control Temperature, F

Caution

743

743

0.30

1.20

0.75

125.6

Warning

770

770

0.40

1.40
0.50

136

Alarm

788

788

0.50

1.50

0.25

149

9O
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CONCLUSIONS AND RECOMMENDATIONS

Based on the results of this program, the following conclusions and recommenda-
tions are made:

® A one-man SX-I is designed, fabricated and assembled. Operation of

the following major components was successfully demonstrated.

a.

b.

c.

d.

e.

CO Disproportionator

H^ Separatorz
Water Feed Mechanism

Control Instrumentation

Monitor Instrumentation

. Electrolyzer drum and module technology existing at the inception of

the current program was not adequate to produce a leak-free electro-

lyzer subassembly with 52 electrolyzer drums [64 electrolyzer

cells). The design of the electrolyzer modules required 540 high

temperature metal-to-metal and metal-to-ceramic seals. Testing

performed throughout the program revealed that the reliability of

the precious metals/ceramic seals is poor. The erratic occurrence

of electrolyzer drum leakage prevented the performance of integrated

SX-I testing.

. It is recommended that further development on the Electrolyzer Cell
drum and Electrolyzer Module design be carried out before the solid

electrolyte concept for O_ regeneration is further evaluated. The
emphasis on this task wou_d be to minimize the number of high tempera-

ture, precious metal/ceramic seals.

. Upon completion of the electrolyzer cell development task described

above, it is recommended that the modules required for the one-man

system be fabricated, integrated into the SX-I and SX-I shakedown,

parametric and endurance testing be completed.

. Although the dual reactor concept is an effective means of removing

carbon from the system, a continuous carbon removal technique would

provide several benefits. It is recommended that a study be con-

ducted aimed at defining a continuous carbon removal technique.

This study would involve the identification of alternative tech-

niques for collecting the carbon formed during C09 reduction processes.

The goal of this study would be to identify possible techniques

which would allow the solid carbon to be collected in a continuous

manner. Such a technique would enable a decrease in the size of the

reactor with a resulting decrease in weight, volume and heat loss

and would eliminate the need for frequent cartridge changes, thus

reducing the need for expendables. Upon completion of this study,

it is recommended that the fabrication and testing of the selected

continuous carbon collection technique be completed.
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1 The DVT performed on the CO Disproportionator revealed that there

was a materials problem in that the electroless nickel failed to

prevent carbon formation on designated areas of the CO Dispropor-
tionator. It is recommended that a thorough materials evaluation

task be performed, with the objective of establishing a material
and/or a coating which will prevent carbon formation when exposed

to the operating temperature and environment of the CO

Disproportionator.
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APPENDIX I SX-I SEQUENCING FLOW CHART

1.0 SX-I MAIN FLOW CHART

£i/c SVstc.,s,Jnc.

PURGE Requested? If PURGE has been depressed the answer to

this question will be yes and the main program will go to B
where B is the PURGE subroutine noted as 2.0. The PURGE sub-

routine will be carried out and the sequence will return to

the main program at point A. If the answer to this question

is no, the sequence will drop down to the next decision point.

NORMAL Requested? If NORMAL has been depressed, the answer

to this will be yes and flow will drop down to the next

decision point. If the answer to this is no, the next deci-

sion point will be bypassed.

Previous Mode SHUTDOWN? This decision point asks whether or

not the system was previously in a SHUTDOWN mode. If it has

been, the answer to this is yes and we go on to the main flow.

If the answer is no, we go to C which is the NORMAL subroutine.

NORMAL subroutine 3.0 is then carried out and returned to

point A. This is in the system to prevent going directly from

the SHUTDOWN mode to the NORMAL mode.

REACTOR CHANGE Requested? The REACTOR CHANGE is requested

either by the pushbutton or automatically by a signal from

the CO disproportionator monitor. If the answer is yes, we

go to the next decision point. If the answer is no, we bypass

the next decision point.

Previous Mode PURGE, STANDBY, or SHUTDOWN? This decision point

is incorporated to prevent going to REACTOR CHANGE mode if the

system was previously in PURGE, STANDBY, or SHUTDOWN. If the

system was in any of these modes, we would go immediately to

the next step, if not, we go to the REACTOR CHANGE subroutine

(4.0). After the subroutine is completed, we return to the

main flow at point A.

STANDBY Requested? STANDBY is requested either manually by

front panel pushbutton or is automatically requested from the

monitor. If STANDBY is requested, we go to the next step, if

not, we bypass the next step.

Previous Mode PURGE or SHUTDOWN? If the previous mode was

PURGE or SHUTDOWN, the STANDBY mode is prohibited and we go to

the next step. If not, we go to the STANDBY subroutine (5.0).

When this is completed the main program is again put into

effect at point A.

SHUTDOWN Requested? If SHUTDOWN is detected either from push-

button or system monitor, we go immediately to the SHUTDOWN

subroutine (6.0). If not, we cycle back to the start of the

main program at point A.

AI-I

continued-
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1.0 SX-I MAIN FLOW CHART - continued

PURGE Subroutine

NORMAL Subroutine

REACTOR CHANGE Subroutine

STANDBY Subroutine

SHUTDOWN Subroutine

continued-
AI-2
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2.0 PURGE SUBROUTINE

System Reset. All logic is reset and initialized.

Energize PURGE Indicator. The PURGE indicator is energized

to notify the operator that the system is in the PURGE mode.

Open SV-ll2 (Energize). This opens the H 2 separator to vacuum.

Open SV-II3 (De-energize). This is open to the N 2 purge and
allows RE-101 to control any underpressure situatxon across the

solid oxide electrolyte (SOE) cells.

Open SV-105 (De-energize). This valve is opened to the vacuum

which allows RE-102 to control any overpressure condition
across the SOE cells.

Open SV-I02 (De-energize). This valve opens the purge to the
HE-101 water SOE cell.

Open SV-I03 (De-energize). This is the main N 2 purge line;

N 2 is introduced to recycle loop.

Open SV-109 (De-energize). The opening of this valve allows

the N 2 purge to clear the H 2 out of the H 2 separator outlet
line.

Energize SV-107 (COD-101Direction_ This action allows the

COD-101 to be on line to the N 2 purge.

Open SV-106 (Energize). This valve opens the N 2 purge to
clear out the lines to the COD-101.

Start P-101 Motor. The bellows pump will now pump the N 2 purge
gases a-_-_d t--_ recycle loops to clear out all the lines.

Start Timer (Two Minutes). This function starts a two-minute

purge cycle time.

Time Out? This decision point allows the N^ purge to take

place for two minutes. If the answer to th_ question is no,

we just sit it in a loop waiting for the timer to time out.

When the answer is yes, we fall through to the next process

block.

Close SV-102 (Energize). This valve closure shuts off HE-101

to the N 2 purge.

Close SV-103 (Energize). This valve closure stops the main N 2
supply to the recycle loop.

AI-3

continued-
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2.0 PURGE SUBROUTINE - continued

Stop P-101 Motor. The recycle loop pump is stopped.

Close SV-106 (De-energize). The N2 purge supply is cut off
to COD-101.

Close SV-109 (Energize). The N 2 purge is shut off to the

H2 separator outlet.

De-energize SV-107. This places the valve in the proper

position for COD-101 on-line operation.

Inhibit PURGE Indicator and Reset Purge Flipflop. The PURGE

indicator on the front panel is turned off, thus telling the

operator the purge cycle has been completed.

Purge complete, return to main program.

continued-
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3.0 NORMAL MODE SUBROUTINE

Energize NORMAL Indicator. The NORMAL indicator on the front

panel is energized to notify the operator that the system is

now going into the NORMAL model.

Flash NORMAL Indicator. The NORMAL indicator is flashed

telling the operator that the system is in a transition state

and is heading toward the normal mode of operation.

Inhibit STANDBY and PURGE Indicators and Reset Flops. This

is a housekeeping function in order to be sure that only one
indicator is on at a time.

Inhibit the STANDBY Elapsed Time Meter. If the system had

previously been in the STANDBY mode, the STANDBY time meter

would have been stopped at this point.

Enable HE-101 Temperature Control. Power is applied to the
HE-101 heater.

Enable CE-101 Temperature Control. Power is applied to the
CE-101 heaters.

Enable CE-102 Temperature Control. Power is applied to the
CE-102 heaters.

Enable CE-I03 Temperature Control. Power is applied to the
CE-103 heaters.

Enable HSR-IOI and HSR-I02 Temperature Controls. Power is
applied to the HSR-101 and HSR-102 heaters.

Enable FB-101 Temperature Control. Power is applied to the

FB-101 heaters.

Enable P-IOI Motor Control. The recycle loop pump is started.

Enable HE-101, CE-101, -I02, -i03 Current Controls. Current is

now supplied to the SOE cells which controls the amount of 02
that is converted from the feed gas supply.

COD-101 On Line? At this point, one of the CO disproportionators

must be on line. To determine which one is on line and if one

is on line, the control logic interrogates the four limit

switches which are attached to the high temperature valves.

These limit switches indicate which COD is on line. If COD-101

is not on line, the program jumps to Step 3.17. If COD-101 is

on line, the program goes to Step 3.14.

AI-5
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3.0 NORMAL MODE SUBROUTINE - continued

Energize COD-101 On Line Indicator. This indicator is illumin-

ated to notify the system operator that COD-101 is now on

line.

Enable COD-101 Temperature Control, Inhibit COD-102

Temperature Control. The COD-101 heaters are now enabled and

the COD-I02 heaters are disabled. This insures that only the

disproportionator that is on line will heat up.

Inhibit COD-102 On Line Indicator. Since the COD-102 is not

on line, the indicator is turned off. The sequence goes to

Step 3.21 of the flow.

COD-102 On Line? If COD-101 is not on line, this decision

point is reached in the program. If the COD-102 is not on

line, the loop cycles back and asks if COD-101 is on line.

The program sits in this loop until either COD-101 or COD-102

is on line. The normal operation cannot proceed until one of

these disproportionators is on line. The operator must place

either COD-101 or COD-102 on line for sequence to get out of

this loop.

Energize COD-102 On Line Indicator. The COD-102 disproportion-
ator is on line so the indicator is illuminated.

Enable COD-102 Temperature Control, Inhibit COD-101

Temperature Control. The power is applied to the COD-102

heaters and the power is disabled from the COD-IOI heaters.

Inhibit COD-101 On Line Indicator. Since COD-101 is no longer

on line, the indicator is turned off.

FB-101_ COD-101, HSR-101, -102, HE-101, CE-101, -102, -103

At Control Point Temperature? The program sits at this point

in the flow until proper operating temperatures have been

reached.

Close SV-105 (Energize). At this point in the program, all

system components are at their normal operating temperature.

SV-105 is closed, isolating the recycle loop from vacuum.

Inhibit Flasher to NORMAL Indicator. The system is now in a

normal mode and the NORMAL indicator is held steady.

Enable NORMAL Mode Elapsed Time Meter.

Open SV-IOI <Energize). This valve opens the water feed to
the flash boiler.

AI-6
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3.0 NORMAL MODE SUBROUTINE - continued

Open SV-104 (Energize). This valve allows the feed gas into

the system.

Close SV-ll3 (Energize). The N 2 supply is now isolated from
the recycle loop.

NORMAL mode in operation, return to main program.

AI-7
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4.0 CARTRIDGE CHANGE MODE SUBROUTINE

Energize REACTOR CHANGE Mode Indicator. This indicator is

illuminated, notifying the operator that the system is going

towards the REACTOR CHANGE mode.

COD-101 On Line? If COD-101 is not on line, we go to Step

4.32. If COD-101 is on line, then we go the next step.

De-energize SV-107 and SV-II0. This configures valve SV-107

and SV-II0 such that COD-102 is ready for servicing.

Open SV-III (Energize). Opening this valve allows COD-102 to

be evacuated.

Enable COD-102 Temperature Control. Power is now applied to

the COD-102 heaters.

Start Timer (Ten Minutes). A timer is started that will allow

COD-102 to be evacuated for a period of ten minutes.

Time Out? The sequence now allows evacuation to take place

for ten minutes.

Close SV-lll (De-energize). Evacuation of COD-102 is now

complete.

COD-102 At Control Point? The sequence at this point is wait-

ing for the temperature of COD-102 to get to its normal

operating point.

Ope n Sv-114 (Energize). Opening this valve allows COD-102 to
be filled with feed gas.

Start Timer (Two Minutes). The timer is started for purging

COD-102 with fill gas for two minutes.

Time Out? The feed gas is allowed to purge COD-102 for two

minutes. The system sits at this point until this occurs.

Close SV-II4 (De-energize). Fill gas is now isolated from

COD-102. At this point in the sequence, manual intervention

is required. The high temperature valves must be configured

to place COD-102 on line and COD-101 off line.

Energize OPEN V-2/CLOSE V-I Indicator. This indicator is

illuminated to notify the operator that he should open HV-103

and HV-I04 and close HV-102 and HV-101.

Flash Indicator. The indicator is flashed to gain the

operator's attention.

AI-8
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4.0 CARTRIDGE CHANGE MODE SUBROUTINE - continued

Cod-102 On Line? If the answer to this is no, the sequence

sits in this loop until COD-102 is on line. When this occurs,

we go to Step 4.17. This may take some time since the manual

operation of opening and closing valves must take place.

Inhibit COD-101 Temperature Control. Since COD-101 is off
line, it is now allowed to cool down.

Inhibit OPEN V-2/CLOSE V-I Indicator. Since COD-102 is now

on line, this indicator can be turned off.

Inhibit COD-101 On Line Indicator. Since COD-101 is no longer
on line, this indicator is turned off.

Energize COD-102 On Line Indicator. Since COD-102 is now on

line, this indicator is illuminated.

COD-101 At Low Temperature? Another manual operation is now

necessary. COD-101 is allowed to cool down to its low

temperature. When this occurs, we fall through to Step 4.22.

Energize SV-II0. This allows COD-101 to be evacuated.

Energize SV-107. This valve allows COD-101 to be serviced.

Open SV-lll (Energize). COD-101 is now open to the vacuum.

Start Timer (Ten Minutes). This timer allows COD-101 to be
evacuated for ten minuts.

Time Out? The sequence sits in this loop for ten minutes
until COD-101 has been evacuated.

Close SV-III {De-energize). Evacuation is now complete.

Energize CHANGE CARTRIDGE Indicator. The CHANGE CARTRIDGE

indicator is illuminated to notify the operator that he can
now remove COD-101.

Flash CHANGE CARTRIDGE Indicator. CHANGE CARTRIDGE indicator

is flashed in order to gain the operator's attention. At this

time, manual intervention in the automatic sequence is required.

The operator must manually open valve V-107 in order to let air

into COD-101 chamber. Once this is done, the operator can then

pull the cartridge out and replace it with a new one.

CHANGE CARTRIDGE Button Depressed? The sequence rests in this

loop until the operator manually depresses the CHANGE CARTRIDGE

button. This notifies the sequence that the cartridge change
has been completed. The operator must depress this button for
normal operation to continue.

AI-9 continued-
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4.0 CARTRIDGE CHANGE MODE SUBROUTINE - continued

Inhibit CHANGE CARTRIDGE and REACTOR CHANGE Indicators and

Reset REACTOR CHANGE Flipflop. The REACTOR CHANGE mode has

been completed, therefore, the indicators are turned off.

Change mode complete, return to main program.

Energize SV-107 and SV-II0. These valves are put in a position

to service COD-101.

Open SV-III <Energize). COD-101 is now open to vacuum.

Enable COD-101 Temperature Control. Power is applied to the

heaters and COD-101 is allowed to heat up during evacuation.

Start Timer (Ten Minutes). A ten-minute timer is started

to allow for the evacuation to take place.

Time Out? COD-101 is evacuated for ten minutes. At the end

of this time the sequence continues.

Close SV-III, (De-energize). Evacuation has been completed.

COD-101 At Control Point. The sequence sits in this loop

waiting for COD-101 to reach its normal operating temperature.

Open SV-II4 (Energize). Feed gas is now fed into COD-101.

Start Timer (Two Minutes). The two minute timer is started

for purging COD-101 with feed gas.

Time Out? The system sits in this loop for two minutes until

the feed gas purge is complete.

Close SV-II4 <De-energize). COD-101 has been filled with feed

gas and the supply is now shut off.

Energize OPENV-I/CLOSE V-2 Indicator. This indicator is

illuminated in order to tell the operator that he can now place
COD-101 on line and take COD-102 off the line.

Flash Indicator. The indicator is flashed to gain the

operator's attention.

COD-101 On Line? Sequence sits in this loop waiting for the

manual operation to be completed.

AI-10
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4.0 CARTRIDGE CHANGE MODE SUBROUTINE - continued

Inhibit COD-102 Temperature Control. Since COD-102 is now

off line, power can be removed from its heaters and allowed
to cool down.

Inhibit OPEN V-I/CLOSE V-2 Indicator. Since COD-101 is now

on line, this indicator can be turned off.

Inhibit COD-102 On Line Indicator. Since COD-102 is no

longer on line, this indicator is turned off.

Energize COD-101 On Line Indicator. Since COD-101 is now

on line, we illuminate the indicator.

COD-102 At Low Temperature? The system waits in this loop

until COD-102 has reached its low temperature.

De-energize SV-107 and SV-II0. These valves are placed in a

position so that COD-102 can be serviced and made ready for

removal.

At this point, the removal sequence is identical to Steps

.4.24 through 4.31, thus the program is returned to point H

"in the program which appears above process block 4.24 in

the flow chart.

AI-II
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5.0 STANDBY MODE SUBROUTINE

Enable STANDBY Mode Elapsed Time Meter. Since we are starting
into the STANDBY mode, we enable the elapsed time meter.

Energize STANDBY Indicator. The STANDBY indicator is illuminated

to notify the operator that we are now going into the STANDBY
mode.

Open SV-ll2 (Energize). This places the H2 separator outlet
on line to vacuum.

Increment STANDBY Mode Counter. The STANDBY mode counter is

incremented. This keeps track of the number of times the

system has gone into the STANDBY mode.

Inhibit SHUTDOWN Indicator. This is a housekeeping function.

Shut off the SHUTDOWN indicator in case the system had been

in the SHUTDOWN mode prior to coming into the STANDBY mode.

Open sv-105 (De-energize). This allows regulator RE-102 to

regulate for overpressure conditions on the SOE cells.

Close SV-102 (Energize). This is a housekeeping chore to

prohibit the purge to the HE-101SOE cell.

Close SV-106 (De-energize). This is a housekeeping chore to

prohibit the purge to the CO disproportionators.

Close SV-109 (Energize). This is a housekeeping chore to

prohibit purge to the H 2 separator outlet.

Open SV-ll3 (De-energize). This allows P_-I01 to regulate for

underpressure conditions with the N2 supply to the SOE cells.

Close SV-lll (Energize). This is a housekeeping chore in case

the system had previously been in a P/ACTOR CHANGE mode. This

prohibits evacuation of the CO disproportionators.

Close SV-101 (De-energize). This shuts off the water supply
to the flash boiler.

Close SV-II4 (De-energize). This is a housekeeping chore in

case the system had been in the REACTOR CHANGE mode. This

shuts off the feed gas to the CO disproportionators.

Close SV-103 (Energize). This is a housekeeping chore. It

shuts off the N2 supply to the recycle loop.

continued-
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5.0 STANDBY MODE SUBROUTINE - continued

Inhibit P-101 Motor Control. The pump is stopped, thus pre-

venting gas flow in the recycle loop.

Close SV-104 (De-energize). The feed gas supply is shut off.

Inhibit NORMAL Mode Elapsed Time Meter. Since we are now in

a STANDBY mode, the NORMAL mode elapsed time meter is dis-

abled in case we have come from a NORMAL mode into a STANDBY

mode.

Inhibit REACTOR CHANGE Indicator. A housekeeping chore in

case we have come from the REACTOR CHANGE mode into the

STANDBY mode.

Inhibit NORMAL Indicator. This shuts off NORMAL mode indicator

in case we have been in a NORMAL mode prior to entering the
STANDBY mode.

Inhibit PURGE Indicator. This turns off the PURGE indicator

in case we have been in a PURGE mode prior to STANDBY.

Inhibit HE-101, CE-IOI, -102, -i05 Current Controls. This

shuts off the current supply to the SOE cells thus preventing

02 generation.

STANDBY or SHUTDOWN in effect, return to main program.

AI-15
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6.0 SHUTDOWN MODE SUBROUTINE

Increment SHUTDOWN Mode Counter and Energize SHUTDOWN

Indicator. The SHUTDOWN mode counter is incremented in order

to keep track of the number of times the system has been in a
SHUTDOWN mode. The SHUTDOWN mode indicator is illuminated to

notify the operator that he is now in the SHUTDOWN mode.

Inhibit STANDBY Mode Elapsed Time Meter and STANDBY Indicator.

STANDBY mode elapsed time meter is inhibited in case we had

been in the STANDBY mode prior to entering the SHUTDOWN mode.

The STANDBY mode indicator is also extinguished at this point.

Inhibit FB-101, HSR-101, HSR-102, COD-101, -102, HE-101,

CE-101, -102, -I03 Temperature Controls. Power is removed

from all the heaters and the system is allowed to cool down.

Close SV-ll2 (De-energize). The H 2 separator is sealed from
vacuum.

At this point in the sequence, the SHUTDOWN mode process steps

are identical to the STANDBY Mode process steps, so we return

to the STANDBY mode subroutine at point I which is Step 5.6.

The sequence continues through Step 5.21 and the system will

stabilize in the SHUTDOWN mode. The main program will be

entered again at point A and cycling will occur looking for

the next request.
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